The titanium alloy (grade 5) is a two-phase material, which finds significant applications in aerospace, medical, marine fields, owing to its superior characteristics like high strength-to-weight ratio, excellent corrosion resistance, and good formability. Hence, the dynamic characteristics of the Ti-6Al-4V alloy are an important area to study. A compressive split Hopkinson pressure bar (SHPB) was used to evaluate the dynamic properties of Ti-6Al-4V alloy under various strain rates between 997 and 1898s−1, and at temperatures between −10 °C and 320 °C. It was evident that the material strength is sensitive to both strain rate and temperature; however, the latter is more predominant than the former. The microstructure of the deformed samples was examined using electron back-scattered diffraction (EBSD). The microscopic observations show that the dynamic impact characteristics of the alloy are higher at higher strain rates than at quasi-static strain rates. The SHPB tests show that the force on the transmitter bar is lower than the force on the incident bar. This indicates that the dynamic equilibrium cannot be achieved during high rate of damage evolution. Various constants in Johnson–Cook (JC) model were evaluated to validate the results. An uncertainty analysis for the experimental results has also been presented.

References

1.
Hopkinson
,
B.
,
1914
, “
A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets
,”
Philos. Trans. R. Soc. London, Ser. A
,
213
(497–508), pp.
437
456
.
2.
Davies
,
R. M.
,
1948
, “
A Critical Study of the Hopkinson Pressure Bar
,”
Philos. Trans. R. Soc. London, Ser. A
,
240
(
821
), pp.
375
457
.
3.
Kolsky
,
H.
,
1949
, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc. Sect. B
,
62
(11), p.
676
.
4.
Lindholm
,
U. S.
,
1964
, “
Some Experiments With the Split Hopkinson Pressure Bar
,”
J. Mech. Phys. Solids
,
12
(
5
), pp.
317
335
.
5.
Follansbee
,
P. S.
, and
Franz
,
C.
,
1983
, “
Wave Propagation in Split Hopkinson Pressure Bar
,”
ASME J. Eng. Mater. Technol.
,
105
(1), p.
61
.
6.
Ellwood
,
S.
,
Griffiths
,
L. J.
, and
Parry
,
D. J.
,
1982
, “
Materials Testing at High Constant Strain Rates
,”
J. Phys. E: Sci. Instrum.
,
15
(
3
), pp. 280–282.
7.
Franz
,
F.
, and
Wright
,
1984
, “
New Experimental Techniques With the Split Hopkinson Pressure Bar
,”
Eighth International Conference on High Energy Rate Fabrication, Pressure Vessel and Piping Division
, San Antonio, TX, June 17–21.http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-83-3422
8.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
,
2005
, “
Pulse Shaping Techniques for Testing Elastic-Plastic Materials With a Split Hopkinson Pressure Bar
,”
Soc. Exp. Mech.
,
45
, p.
2
.
9.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
,
2002
,
Pulse Shaping Techniques for Testing Brittle Materials With a Split Hopkinson Pressure Bar
, Vol.
24
,
Society for Experimental Mechanics
, Bethel, CT, p.
1
.
10.
Chichili
,
D. R.
,
Ramesh
,
K. T.
, and
Hemkar
,
K. J.
,
1998
, “
The High Strain Rate Response of Alpha Titanium: Experiments, Deformation Mechanism and Modelling
,”
Acta Mater.
,
46
(
3
), pp.
1025
1043
.
11.
Li
,
Q.
,
Xu
,
Y. B.
, and
Bassim
,
M. N.
,
2004
, “
Dynamic Mechanical Behaviour of Pure Titanium
,”
J. Mater. Process. Technol.
,
155–156
, pp.
1889
1892
.
12.
Lee
,
W. S.
, and
Lin
,
C. F.
,
1998
, “
Plastic Deformation and Fracture Behaviour of Ti-6Al-4V Alloy Loaded With High Strain Rate Under Various Temperatures
,”
Mater. Sci. Eng.
,
241
(1–2), pp.
48
59
.
13.
Lee
,
W. S.
, and
Lin
,
C. F.
,
1998
, “
High Temperature Deformation Behaviour If Ti6Al4V Alloy Evaluated by High Strain Rate Compression Tests
,”
J. Mater. Process. Technol.
,
75
(1–3), pp.
127
136
.
14.
Lee
,
W. S.
,
Lin
,
C. F.
,
Chen
,
T. H.
, and
Hwang
,
H. H.
,
2008
, “
Correlation of Dynamic Impact Properties With Adiabatic Shear Banding Behaviour in Ti-15Mo-5Zr-3Al Alloy
,”
Mater. Sci. Eng. A
,
475
(1–2), pp.
172
184
.
15.
Lee
,
W. S.
,
Lin
,
C. F.
,
Chen
,
T. H.
, and
Hwang
,
H. H.
,
2008
, “
Effect of Strain Rate and Temperature on Mechanical Behaviour of Ti-15Mo-5Zr-3Al Alloy
,”
J. Mech. Behav. Biomed. Mater.
,
1
(4), pp.
336
344
.
16.
Lennon
,
A. M.
, and
Ramesh
,
K. T.
,
2004
, “
The Influence of Crystal Structure on the Dynamic Behavior of Materials at High Temperatures
,”
Int. J. Plast.
,
20
(2), pp.
269
290
.
17.
Khan
,
A. S.
,
Kazmi
,
R.
,
Farrokh
,
B.
, and
Zupan
,
M.
,
2007
, “
Effect of Oxygen Content and Microstructure on the Thermo-Mechanical Response of Three Ti–6Al–4V Alloys: Experiments and Modelling Over a Wide Range of Strain-Rates and Temperatures
,”
Int. J. Plast.
,
23
(7), pp.
1105
1125
.
18.
Shu
,
S.
,
Qiu
,
F.
,
Xing
,
B.
,
Jin
,
S.
,
Wang
,
J.
, and
Jiang
,
Q.
,
2013
, “
Effect of Strain Rate on the Compression Behavior of TiAl and TiAl–2Mn Alloys Fabricated by Combustion Synthesis and Hot Press Consolidation
,”
Intermetallics
,
43
, pp.
24
28
.
19.
Seo
,
S.
,
Min
,
O.
, and
Yang
,
H.
,
2005
, “
Constitutive Equation for Ti-6Al-4V at High Temperature Measured Using the SHPB Technique
,”
Int. J. Impact Eng.
,
31
(6), pp.
735
754
.
20.
Wang
,
Y. S.
,
Hao
,
G. J.
,
Qiao
,
J. W.
,
Zhang
,
Y.
, and
Lin
,
J. P.
,
2014
, “
High Strain Rate Compressive Behavior of Ti-Based Metallic Glass Matrix Composites
,”
Intermetallics
,
52
, pp.
138
143
.
21.
Tasdemirci
,
A.
,
Hizal
,
A.
,
Altindis
,
M.
,
Hall
,
I. W.
, and
Guden
,
M.
,
2008
, “
The Effect of Strain Rate on the Compressive Deformation Behaviour of a Sintered Ti6Al4V Powder Compact
,”
Mater. Sci. Eng. A
,
474
(1–2), pp.
335
341
.
22.
Chang
,
L.
,
Zhou
,
C. Y.
,
Liu
,
H. X.
,
Li
,
J.
, and
He
,
X. H.
,
2017
, “
Orientation and Strain Rate Dependent Tensile Behavior of Single Crystal Titanium Nanowires by Molecular Dynamics Simulations
,”
J. Mater. Sci. Technol.
, epub.
23.
Naik
,
N. K.
,
Shankar
,
P. J.
,
Kavala
,
V. R.
,
Ravikumar
,
G.
,
Pothnis
,
J. R.
, and
Arya
,
H.
,
2011
, “
High Strain Rate Mechanical Behaviour of Epoxy Under Compressive Loading: Experimental and Modelling Studies
,”
Mater. Sci. Eng. A
,
528
(3), pp.
846
854
.
24.
Christensen
,
R. M.
, “
Observations on the Definition of Yield Stress
,”
Acta Mech.
,
196
(3–4), pp.
239
244
.
25.
Johnson
,
G. R.
, and
Cook
,
W. H.
, “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures,”
7th International Symposium on Ballistics
, Hague, The Netherlands, Apr. 19–21.http://www.lajss.org/HistoricalArticles/A%20constitutive%20model%20and%20data%20for%20metals.pdf
26.
Hongyan
,
L.
, and
Xiaowei
,
W.
,
2001
, “
Dislocation Velocity Exponent and the Strain Rate
,”
J. Mater. Sci. Technol.
,
17
(3), pp. 363–366.
27.
Jayaram
,
R. P.
,
Yernamma
,
P.
,
Arya
,
H.
, and
Naik
,
N. K.
,
2011
, “
High Strain Rate Tensile Behavior of Aluminium Alloy 7075 T651 and IS2062 Mild Steel
,”
ASME J. Eng. Mater. Technol.
,
133
(2), p. 021026.
28.
Bell
,
S.
,
2001
,
A Beginner's Guide to Uncertainty of Measurement
,
National Physical Laboratory
,
Middlesex, UK
.
29.
United Kingdom Accreditation Service Publication M3003
,
2007
,
The Expression of Uncertainty and Confidence in Measurement
, 2nd ed.,
UKAS
,
Middlesex, UK
.
30.
Dorogoy
,
A.
, and
Rittel
,
D.
,
2009
, “
Determination of the Johnson–Cook Material Parameters Using the SCS Specimen
,”
Exp. Mech.
,
49
, pp.
881
885
.
31.
Meyers
,
M. A.
,
1994
,
Dynamic Behaviour of Materials
,
Wiley
,
New York
, pp.
1
19
.
You do not currently have access to this content.