Abstract
Additive manufacturing (AM) method has attracted huge interest in the past decade due to its ability in building complicated geometries with a much lower cost than conventionally produced parts. In AM, the final mechanical properties can be controlled by the AM process parameters. In other words, the AM process parameters control the amount of energy that is transferred into the powder and consequently the resulting microstructure. In this study, the correlation between melt pool geometry and mechanical properties of selective laser melted (SLM) Ti–6Al–4V samples is investigated.
Issue Section:
Special Issue: The Behavior of Crystalline Materials: In Honor of Professor Hussein Zbib
References
1.
Jia
, Q.
, and Gu
, D.
, 2014
, “Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties
,” J. Alloys Compd.
, 585
, pp. 713
–721
. 2.
Aboulkhair
, N. T.
, Everitt
, N. M.
, Ashcroft
, I.
, and Tuck
, C.
, 2014
, “Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting
,” Addit. Manuf.
, 1
, pp. 77
–86
.3.
Thijs
, L.
, Verhaeghe
, F.
, Craeghs
, T.
, Van Humbeeck
, J.
, and Kruth
, J.-P.
, 2010
, “A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V
,” Acta Mater.
, 58
(9
), pp. 3303
–3312
. 4.
Rashid
, R.
, Masood
, S. H.
, Ruan
, D.
, Palanisamy
, S.
, Rashid
, R. R.
, and Brandt
, M.
, 2017
, “Effect of Scan Strategy on Density and Metallurgical Properties of 17-4PH Parts Printed by Selective Laser Melting (SLM)
,” J. Mater. Process. Technol.
, 249
, pp. 502
–511
. 5.
Murr
, L.
, Quinones
, S.
, Gaytan
, S.
, Lopez
, M.
, Rodela
, A.
, Martinez
, E.
, Hernandez
, D.
, Martinez
, E.
, Medina
, F.
, and Wicker
, R.
, 2009
, “Microstructure and Mechanical Behavior of Ti–6Al–4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications
,” J. Mech. Behav. Biomed. Mater.
, 2
(1
), pp. 20
–32
. 6.
Facchini
, L.
, Magalini
, E.
, Robotti
, P.
, Molinari
, A.
, Höges
, S.
, and Wissenbach
, K.
, 2010
, “Ductility of a Ti-6Al-4V Alloy Produced by Selective Laser Melting of Prealloyed Powders
,” Rapid Prototyp. J.
, 16
(6
), pp. 450
–459
. 7.
Facchini
, L.
, Magalini
, E.
, Robotti
, P.
, and Molinari
, A.
, 2009
, “Microstructure and Mechanical Properties of Ti-6Al-4V Produced by Electron Beam Melting of pre-Alloyed Powders
,” Rapid Prototyp. J.
, 15
(3
), pp. 171
–178
. 8.
Chlebus
, E.
, Kuźnicka
, B.
, Kurzynowski
, T.
, and Dybała
, B.
, 2011
, “Microstructure and Mechanical Behaviour of Ti–6Al–7Nb Alloy Produced by Selective Laser Melting
,” Mater. Charact.
, 62
(5
), pp. 488
–495
. 9.
Mirkoohi
, E.
, Ning
, J.
, Bocchini
, P.
, Fergani
, O.
, Chiang
, K.-N.
, and Liang
, S.
, 2018
, “Thermal Modeling of Temperature Distribution in Metal Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties
,” J. Manuf. Mater. Process.
, 2
(3
), p. 63
. 10.
Tabei
, A.
, Mirkoohi
, E.
, Garmestani
, H.
, and Liang
, S.
, 2019
, “Modeling of Texture Development in Additive Manufacturing of Ni-Based Superalloys
,” Int. J. Adv. Manuf. Technol.
, pp. 1
–10
.11.
Mirkoohi
, E.
, Sievers
, D. E.
, Garmestani
, H.
, Chiang
, K.
, and Liang
, S. Y.
, 2019
, “Three-dimensional Semi-Elliptical Modeling of Melt Pool Geometry Considering Hatch Spacing and Time Spacing in Metal Additive Manufacturing
,” J. Manuf. Process.
, 45
, pp. 532
–543
. 12.
Wang
, Z.
, Palmer
, T. A.
, and Beese
, A. M.
, 2016
, “Effect of Processing Parameters on Microstructure and Tensile Properties of Austenitic Stainless Steel 304L Made by Directed Energy Deposition Additive Manufacturing
,” Acta Mater.
, 110
, pp. 226
–235
. 13.
Mahdavi
, M.
, Hoar
, E.
, Sievers
, D. E.
, Chong
, Y.
, Tsuji
, N.
, Liang
, S.
, and Garmestani
, H.
, 2019
, “Statistical Representation of the Microstructure and Strength for a two-Phase Ti–6Al–4V
,” Mater. Sci. Eng. A
, 759
, pp. 313
–319
. 14.
Yang
, Q.
, Zhang
, P.
, Cheng
, L.
, Min
, Z.
, Chyu
, M.
, and To
, A. C.
, 2016
, “Finite Element Modeling and Validation of Thermomechanical Behavior of Ti-6Al-4V in Directed Energy Deposition Additive Manufacturing
,” Addit. Manuf.
, 12
, pp. 169
–177
.15.
Cao
, J.
, Gharghouri
, M. A.
, and Nash
, P.
, 2016
, “Finite-element Analysis and Experimental Validation of Thermal Residual Stress and Distortion in Electron Beam Additive Manufactured Ti-6Al-4V Build Plates
,” J. Mater. Process. Technol.
, 237
, pp. 409
–419
. 16.
Nikoukar
, M.
, Patil
, N.
, Pal
, D.
, and Stucker
, B.
, 2013
, “Methods for Enhancing the Speed of Numerical Calculations for the Prediction of the Mechanical Behavior of Parts Made Using Additive Manufacturing
,” Proceedings of the Solid Freeform Fabrication Symposium
, pp. 12
–14
.17.
Mahdavi
, M.
, Hoar
, E.
, Sievers
, D. E.
, Liang
, S.
, and Garmestani
, H.
, 2019
, “Inverse Modeling of Inelastic Properties of a two-Phase Microstructure
,” Eng. Res. Express
, 1
(1
), p. 015026
. 18.
Mahdavi
, M.
, Yousefi
, E.
, Baniassadi
, M.
, Karimpour
, M.
, and Baghani
, M.
, 2017
, “Effective Thermal and Mechanical Properties of Short Carbon Fiber/Natural Rubber Composites as a Function of Mechanical Loading
,” Appl. Therm. Eng.
, 117
, pp. 8
–16
. 19.
Chavoshnejad
, P.
, and Razavi
, M. J.
, 2020
, “Effect of the Interfiber Bonding on the Mechanical Behavior of Electrospun Fibrous Mats
,” Sci. Rep.
, 10
(1
), pp. 1
–10
. 20.
Riahipour
, R.
, Sahraei
, A. A.
, van de Werken
, N.
, Tehrani
, M.
, Abrinia
, K.
, and Baniassadi
, M.
, 2018
, “Improving Flame-Retardant, Thermal, and Mechanical Properties of an Epoxy Using Halogen-Free Fillers
,” Sci. Eng. Compos. Mater.
, 25
(5
), pp. 939
–946
. 21.
Yan
, W.
, Lian
, Y.
, Yu
, C.
, Kafka
, O. L.
, Liu
, Z.
, Liu
, W. K.
, and Wagner
, G. J.
, 2018
, “An Integrated Process–Structure–Property Modeling Framework for Additive Manufacturing
,” Comput. Methods Appl. Mech. Eng.
, 339
, pp. 184
–204
. 22.
Shin
, Y. C.
, Bailey
, N.
, Katinas
, C.
, and Tan
, W.
, 2018
, “Predictive Modeling Capabilities From Incident Powder and Laser to Mechanical Properties for Laser Directed Energy Deposition
,” Comput. Mech.
, 61
(5
), pp. 617
–636
. 23.
Zadpoor
, A. A.
, and Hedayati
, R.
, 2016
, “Analytical Relationships for Prediction of the Mechanical Properties of Additively Manufactured Porous Biomaterials
,” J. Biomed. Mater. Res., Part A
, 104
(12
), pp. 3164
–3174
. 24.
Gong
, H.
, Rafi
, K.
, Gu
, H.
, Ram
, G. J.
, Starr
, T.
, and Stucker
, B.
, 2015
, “Influence of Defects on Mechanical Properties of Ti–6Al–4V Components Produced by Selective Laser Melting and Electron Beam Melting
,” Mater. Des.
, 86
, pp. 545
–554
. 25.
Baufeld
, B.
, Van der Biest
, O.
, and Gault
, R.
, 2010
, “Additive Manufacturing of Ti–6Al–4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties
,” Mater. Des.
, 31
, pp. S106
–S111
. 26.
Murr
, L. E.
, Gaytan
, S.
, Ceylan
, A.
, Martinez
, E.
, Martinez
, J.
, Hernandez
, D.
, Machado
, B.
, Ramirez
, D.
, Medina
, F.
, and Collins
, S.
, 2010
, “Characterization of Titanium Aluminide Alloy Components Fabricated by Additive Manufacturing Using Electron Beam Melting
,” Acta Mater.
, 58
(5
), pp. 1887
–1894
. 27.
Uhlmann
, E.
, Kersting
, R.
, Klein
, T. B.
, Cruz
, M. F.
, and Borille
, A. V.
, 2015
, “Additive Manufacturing of Titanium Alloy for Aircraft Components
,” Procedia CIRP
, 35
, pp. 55
–60
. 28.
Carslaw
, H. S.
, and Jaeger
, J. C.
, 1992
, Conduction of Heat in Solids
, Clarendon press
.29.
Fu
, C.
, and Guo
, Y.
, 2014
, “Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V
,” ASME J. Manuf. Sci. Eng.
, 136
(6
), p. 061004
. 30.
Yang
, Y.
, Knol
, M.
, Van Keulen
, F.
, and Ayas
, C.
, 2018
, “A Semi-Analytical Thermal Modelling Approach for Selective Laser Melting
,” Addit. Manuf.
, 21
, pp. 284
–297
.31.
Welsch
, G.
, Boyer
, R.
, and Collings
, E.
, 1993
, Materials Properties Handbook: Titanium Alloys
, ASM international
.32.
Yadroitsev
, I.
, and Yadroitsava
, I.
, 2015
, “Evaluation of Residual Stress in Stainless Steel 316L and Ti6Al4V Samples Produced by Selective Laser Melting
,” Virtual Phys. Prototyping
, 10
(2
), pp. 67
–76
. 33.
Simonelli
, M.
, Tse
, Y. Y.
, and Tuck
, C.
, 2014
, “Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti–6Al–4V
,” Mater. Sci. Eng. A
, 616
, pp. 1
–11
. 34.
Vrancken
, B.
, Thijs
, L.
, Kruth
, J.-P.
, and Van Humbeeck
, J.
, 2012
, “Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties
,” J. Alloys Compd.
, 541
, pp. 177
–185
. 35.
Xu
, W.
, Brandt
, M.
, Sun
, S.
, Elambasseril
, J.
, Liu
, Q.
, Latham
, K.
, Xia
, K.
, and Qian
, M.
, 2015
, “Additive Manufacturing of Strong and Ductile Ti–6Al–4V by Selective Laser Melting via in Situ Martensite Decomposition
,” Acta Mater.
, 85
, pp. 74
–84
. 36.
Vilaro
, T.
, Colin
, C.
, and Bartout
, J.-D.
, 2011
, “As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting
,” Metall. Mater. Trans. A
, 42
(10
), pp. 3190
–3199
. 37.
Liu
, P.
, Ji
, Y.
, Wang
, Z.
, Qiu
, C.
, Antonysamy
, A.
, Chen
, L.-Q.
, Cui
, X.
, and Chen
, L.
, 2018
, “Investigation on Evolution Mechanisms of Site-Specific Grain Structures During Metal Additive Manufacturing
,” J. Mater. Process. Technol.
, 257
, pp. 191
–202
. 38.
Liu
, J.
, and To
, A. C.
, 2017
, “Quantitative Texture Prediction of Epitaxial Columnar Grains in Additive Manufacturing Using Selective Laser Melting
,” Addit. Manuf.
, 16
, pp. 58
–64
.39.
Dong
, Z.
, Zhang
, X.
, Shi
, W.
, Zhou
, H.
, Lei
, H.
, and Liang
, J.
, 2018
, “Study of Size Effect on Microstructure and Mechanical Properties of AlSi10Mg Samples Made by Selective Laser Melting
,” Materials
, 11
(12
), p. 2463
. 40.
Rodrigues
, T. A.
, Duarte
, V.
, Avila
, J. A.
, Santos
, T. G.
, Miranda
, R.
, and Oliveira
, J.
, 2019
, “Wire and arc Additive Manufacturing of HSLA Steel: Effect of Thermal Cycles on Microstructure and Mechanical Properties
,” Addit. Manuf.
, 27
, pp. 440
–450
.41.
Liverani
, E.
, Toschi
, S.
, Ceschini
, L.
, and Fortunato
, A.
, 2017
, “Effect of Selective Laser Melting (SLM) Process Parameters on Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel
,” J. Mater. Process. Technol.
, 249
, pp. 255
–263
. 42.
Mahdavi
, M.
, Mirkoohi
, E.
, Hoar
, E.
, Liang
, S.
, and Garmestani
, H.
, 2020
, “Prediction of the Deformation Behavior of a Selective Laser-Melted Ti-6Al-4V Alloy as a Function of Process Parameters
,” Int. J. Adv. Manuf. Technol.
, pp. 1
–8
.Copyright © 2021 by ASME
You do not currently have access to this content.