Abstract

The residual effect of thermally and mechanically loaded polyurea samples was investigated in this study using terahertz time-domain spectroscopy (THz-TDS). Samples of different thicknesses were submerged in liquid nitrogen and allowed to reach cryogenic isothermal conditions while another set of samples were extracted from quasi-statically loaded strips. All samples were interrogated using THz-TDS since terahertz waves exhibit non-ionizing, nondestructive interactions with polymers. The time-domain terahertz signals were used to extract the optical and electrical properties as a function of sample thickness and loading conditions. The residual effect was prominent in the mechanically loaded samples compared to a nearly negligible presence in thermally loaded polyurea. On average, the results of the thermally loaded samples were subtle when compared to the virgin samples, whereas samples that were mechanically stretched showed a considerable difference in the characteristics of the time-domain signals. For example, the peak amplitude in the time-domain signal of the stretched thick sample showed a 9% difference from that of the virgin sample, whereas the thermally loaded sample saw only a 4.9% difference. Spectral analysis reported the frequency-dependent, complex refractive index of virgin and loaded polyurea as a function of thickness and spectral peaks associated with fundamental vibrational modes of the polyurea structure. The disappearance of three spectral peaks, 0.56 THz, 0.76 THz, and 0.95 THz, elucidated the residual effect of the mechanically loaded samples. In general, terahertz spectroscopy was shown to be a promising tool for future in situ and in operando investigations of field-dependent polymer responses.

References

1.
Barsoum
,
R. G.
,
2015
,
Elastomeric Polymers With High Rate Sensitivity: Applications in Blast, Shockwave, and Penetration Mechanics
,
Elsevier Inc.
,
Waltham, MA
.
2.
Youssef
,
G.
, and
Gupta
,
V.
,
2013
, “
Resonance in Polyurea-Based Multilayer Structures Subjected to Laser-Generated Stress Waves
,”
Exp. Mech.
,
53
(
2
), pp.
145
154
.
3.
Jain
,
A.
,
Youssef
,
G.
, and
Gupta
,
V.
,
2013
, “
Dynamic Tensile Strength of Polyurea-Bonded Steel/E-Glass Composite Joints
,”
J. Adhes. Sci. Technol.
,
27
(
4
), pp.
403
412
.
4.
Youssef
,
G.
, and
Gupta
,
V.
,
2011
, “
Dynamic Tensile Strength of Polyurea
,”
J. Mater. Res.
,
27
(
2
), pp.
494
499
.
5.
Jiao
,
T.
,
Clifton
,
R. J.
, and
Grunschel
,
S. E.
,
2007
, “
Pressure-Sensitivity and Tensile Strength of an Elastomer at High Strain Rates
,”
AIP Conference Proceedings
,
Waikoloa, HI
,
June 24–29
, pp.
707
710
.
6.
Neba Mforsoh
,
I.
,
LeBlanc
,
J.
, and
Shukla
,
A.
,
2020
, “
Constitutive Compressive Behavior of Polyurea With Exposure to Aggressive Marine Environments
,”
Polym. Test.
,
85
, p.
106450
.
7.
Jain
,
A.
, and
Gupta
,
V.
,
2012
, “
Construction and Characterization of Stainless Steel/Polyurea/E-Glass Composite Joints
,”
Mech. Mater.
,
46
, pp.
16
22
.
8.
Mohotti
,
D.
,
Ngo
,
T.
,
Mendis
,
P.
, and
Raman
,
S. N.
,
2013
, “
Polyurea Coated Composite Aluminium Plates Subjected to High Velocity Projectile Impact
,”
Mater. Des.
,
52
, pp.
1
16
.
9.
Amini
,
M. R.
,
Simon
,
J.
, and
Nemat-Nasser
,
S.
,
2010
, “
Numerical Modeling of Effect of Polyurea on Response of Steel Plates to Impulsive Loads in Direct Pressure-Pulse Experiments
,”
Mech. Mater.
,
42
(
6
), pp.
615
627
.
10.
Gardner
,
N.
,
Wang
,
E.
,
Kumar
,
P.
, and
Shukla
,
A.
,
2012
, “
Blast Mitigation in a Sandwich Composite Using Graded Core and Polyurea Interlayer
,”
Exp. Mech.
,
52
(
2
), pp.
119
133
.
11.
Barsoum
,
R. G. S.
, and
Dudt
,
P. J.
,
2010
, “
The Fascinating Behaviors of Ordinary Materials Under Dynamic Conditions
,”
Ammtiac Q.
,
4
(
4
), pp.
11
14
.
12.
Ramirez
,
B. J.
, and
Gupta
,
V.
,
2018
, “
Evaluation of Novel Temperature-Stable Viscoelastic Polyurea Foams as Helmet Liner Materials
,”
Mater. Des.
,
137
, pp.
298
304
.
13.
Gao
,
C.
,
Jin
,
Y. Z.
,
Kong
,
H.
,
Whitby
,
R. L. D.
,
Acquah
,
S. F. A.
,
Chen
,
G. Y.
,
Qian
,
H.
,
Hartschuh
,
A.
,
Silva
,
S.R.P.
,
Henley
,
S.
, and
Fearon
,
P.
,
2005
, “
Polyurea-Functionalized Multiwalled Carbon Nanotubes: Synthesis, Morphology, and Raman Spectroscopy
,”
J. Phys. Chem. B
,
109
(
24
), pp.
11925
11932
.
14.
Kirmani
,
M. H.
,
Arias-Monje
,
P. J.
, and
Kumar
,
S.
,
2019
, “
High Interfacial Shear Strain in Polyurea-Carbon Nanotube Composite Sheets
,”
ACS Appl. Nano Mater.
,
2
(
11
), pp.
6849
6857
.
15.
Qiao
,
J.
,
Schaaf
,
K.
,
Amirkhizi
,
A. V.
, and
Nemat-Nasser
,
S.
,
2010
, “
Effect of Particle Size and Volume Fraction on Tensile Properties of Fly Ash/Polyurea Composites
,”
Behav. Mech. Multifunct. Mater. Compos.
,
2010
(
7644
), p.
76441X
.
16.
Do
,
S.
,
Stepp
,
S.
, and
Youssef
,
G.
,
2020
, “
Quasi-static and Dynamic Characterization of Polyurea Microspheres Reinforced Polyurea Matrix Composite
,”
Mater. Today Commun.
,
25
, p.
101464
.
17.
Do
,
S.
,
Huynh
,
N. U.
,
Reed
,
N.
,
Shaik
,
A. M.
,
Nacy
,
S.
, and
Youssef
,
G.
,
2020
, “
Partially-Perforated Self-reinforced Polyurea Foams
,”
Appl. Sci.
,
10
(
17
), p.
5869
.
18.
Do
,
S.
,
2018
, “
Synthesis and Characterization of Polyurea-Polyurea Composite
,”
Masters thesis
,
San Diego State University
,
San Diego, CA
.
19.
Sarva
,
S. S.
,
Deschanel
,
S.
,
Boyce
,
M. C.
, and
Chen
,
W.
,
2007
, “
Stress-Strain Behavior of a Polyurea and a Polyurethane From Low to High Strain Rates
,”
Polymer
,
48
(
8
), pp.
2208
2213
.
20.
Roland
,
C. M.
,
Twigg
,
J. N.
,
Vu
,
Y.
, and
Mott
,
P. H.
,
2007
, “
High Strain Rate Mechanical Behavior of Polyurea
,”
Polymer
,
48
(
2
), pp.
574
578
.
21.
Raman
,
S. N.
,
Ngo
,
T.
,
Lu
,
J.
, and
Mendis
,
P.
,
2013
, “
Experimental Investigation on the Tensile Behavior of Polyurea at High Strain Rates
,”
Mater. Des.
,
50
, pp.
124
129
.
22.
Yi
,
J.
,
Boyce
,
M. C.
,
Lee
,
G. F.
, and
Balizer
,
E.
,
2006
, “
Large Deformation Rate-Dependent Stress-Strain Behavior of Polyurea and Polyurethanes
,”
Polymer
,
47
(
1
), pp.
319
329
.
23.
Runt
,
J.
,
Pangon
,
A.
,
Castagna
,
A.
,
He
,
Y.
, and
Grujicic
,
M.
,
2015
,
Elastomeric Polymers With High Rate Sensitivity: Applications in Blast, Shockwave, and Penetration Mechanics
,
William Andrew Publishing
,
Norwich, NY
, pp.
5
16
.
24.
Grujicic
,
M.
,
He
,
T.
,
Pandurangan
,
B.
,
Svingala
,
F. R.
,
Settles
,
G. S.
, and
Hargather
,
M. J.
,
2012
, “
Experimental Characterization and Material-Model Development for Microphase-Segregated Polyurea: An Overview
,”
J. Mater. Eng. Perform.
,
21
(
1
), pp.
2
16
.
25.
Grujicic
,
M.
,
Pandurangan
,
B.
,
King
,
A. E.
,
Runt
,
J.
,
Tarter
,
J.
, and
Dillon
,
G.
,
2011
, “
Multi-Length Scale Modeling and Analysis of Microstructure Evolution and Mechanical Properties in Polyurea
,”
J. Mater. Sci.
,
46
(
6
), pp.
1767
1779
.
26.
Heyden
,
S.
,
Ortiz
,
M.
, and
Fortunelli
,
A.
,
2016
, “
All-Atom Molecular Dynamics Simulations of Multiphase Segregated Polyurea Under Quasistatic, Adiabatic, Uniaxial Compression
,”
Polymer
,
106
, pp.
100
108
.
27.
He
,
Y.
,
Xie
,
D.
, and
Zhang
,
X.
,
2014
, “
The Structure, Microphase-Separated Morphology, and Property of Polyurethanes and Polyureas
,”
J. Mater. Sci.
,
49
(
21
), pp.
7339
7352
.
28.
Shahi
,
V.
,
Alizadeh
,
V.
, and
Amirkhizi
,
A. V.
,
2020
, “
Thermo-mechanical Characterization of Polyurea Variants
,”
Mech. Time-Dependent Mater.
,
24
(
3
), pp.
1
25
.
29.
Gupta
,
V.
,
Citron
,
J. K.
, and
Youssef
,
G. H.
,
2013
, “
Material for Mitigating Impact Forces with Collision Durations in Nanoseconds to Milliseconds Range
,” U.S. Patent Application No. 14/827,120.
30.
Youssef
,
G.
,
Reed
,
N.
,
Huynh
,
N. U.
,
Rosenow
,
B.
, and
Manlulu
,
K.
,
2020
, “
Experimentally-Validated Predictions of Impact Response of Polyurea Foams Using Viscoelasticity Based on Bulk Properties
,”
Mech. Mater.
,
148
, pp.
1
8
.
31.
Koohbor
,
B.
,
Blourchian
,
A.
,
Uddin
,
K. Z.
, and
Youssef
,
G.
,
2020
, “
Characterization of Energy Absorption and Strain Rate Sensitivity of a Novel Elastomeric Polyurea Foam
,”
Adv. Eng. Mater.
,
2000797
, pp.
1
11
.
32.
Ramirez
,
B. J.
, and
Gupta
,
V.
,
2019
, “
Energy Absorption and Low Velocity Impact Response of Open-Cell Polyurea Foams
,”
J. Dyn. Behav. Mater.
,
5
(
2
), pp.
132
142
.
33.
Reed
,
N.
,
Huynh
,
N. U.
,
Rosenow
,
B.
,
Manlulu
,
K.
, and
Youssef
,
G.
,
2019
, “
Synthesis and Characterization of Elastomeric Polyurea Foam
,”
J. Appl. Polym. Sci.
,
48839
, pp.
1
8
.
34.
Amirkhizi
,
A. V.
,
Isaacs
,
J.
,
McGee
,
J.
, and
Nemat-Nasser
,
S.
,
2006
, “
An Experimentally-Based Viscoelastic Constitutive Model for Polyurea, Including Pressure and Temperature Effects
,”
Philos. Mag.
,
86
(
36
), pp.
5847
5866
.
35.
Zhao
,
J.
,
Knauss
,
W. G.
, and
Ravichandran
,
G.
,
2008
, “
Applicability of the Time—Temperature Superposition Principle in Modeling Dynamic Response of a Polyurea
,”
Mech. Time Depend. Mater.
,
11
, pp.
289
308
.
36.
Whitten
,
I.
, and
Youssef
,
G.
,
2016
, “
The Effect of Ultraviolet Radiation on Ultrasonic Properties of Polyurea
,”
Polym. Degrad. Stab.
,
123
, pp.
88
93
.
37.
Youssef
,
G.
, and
Whitten
,
I.
,
2017
, “
Dynamic Properties of Ultraviolet-Exposed Polyurea
,”
Mech. Time-Dependent Mater.
,
21
(
3
), pp.
351
363
.
38.
Youssef
,
G.
,
Brinson
,
J.
, and
Whitten
,
I.
,
2018
, “
The Effect of Ultraviolet Radiation on the Hyperelastic Behavior of Polyurea
,”
J. Polym. Environ.
,
26
(
1
), pp.
183
190
.
39.
Shaik
,
A. M.
,
Huynh
,
N. U.
, and
Youssef
,
G.
,
2020
, “
Micromechanical Behavior of Ultraviolet-Exposed Polyurea
,”
Mech. Mater.
,
140
, p.
103244
.
40.
Joshi
,
V. S.
, and
Milby
,
C. L.
,
2012
, “
High Strain Rate Behavior of Polyurea Compositions
,”
AIP Conf. Proc.
,
1426
, pp.
167
170
.
41.
Shim
,
J.
, and
Mohr
,
D.
,
2009
, “
Using Split Hopkinson Pressure Bars to Perform Large Strain Compression Tests on Polyurea at Low, Intermediate and High Strain Rates
,”
Int. J. Impact Eng.
,
36
(
9
), pp.
1116
1127
.
42.
Che
,
K.
,
Lyu
,
P.
,
Wan
,
F.
, and
Ma
,
M.
,
2019
, “
Investigations on Aging Behavior and Mechanism of Polyurea Coating in Marine Atmosphere
,”
Materials
,
12
(
21
), pp.
1
15
.
43.
Ransom
,
T. C.
,
Ahart
,
M.
,
Hemley
,
R. J.
, and
Roland
,
C. M.
,
2018
, “
Acoustic Properties and Density of Polyurea at Pressure up to 13.5GPa Through Brillouin Scattering Spectroscopy
,”
J. Appl. Phys.
,
123
(
19
), p.
195102
.
44.
Balizer
,
E.
,
Fedderly
,
J.
,
Lee
,
G.
,
Bartyczak
,
S.
, and
Mock
,
W.
,
2011
, “
Investigation of Microstructural Changes in Impacted Polyurea Coatings Using Small Angle X-Ray Scattering (SAXS)
,”
Powder Diffr.
,
26
(
2
), pp.
149
154
.
45.
Huynh
,
N. U.
, and
Youssef
,
G.
,
2021
, “
Physical Evidence of Stress-Induced Conformational Changes in Polymers
,”
Exp. Mech.
,
61
(
3
), pp.
469
481
.
46.
Youssef
,
G. H.
,
2011
,
Dynamic Properties of Polyurea
,
University of California
,
Los Angeles, CA
.
47.
Wang
,
Y.
,
Zhou
,
X.
,
Lin
,
M.
, and
Zhang
,
Q. M.
,
2009
, “
High-Energy Density in Aromatic Polyurea Thin Films
,”
Appl. Phys. Lett.
,
94
(
20
), p.
202905
.
48.
Hattori
,
T.
,
Takahashi
,
Y.
,
Iijima
,
M.
, and
Fukada
,
E.
,
1996
, “
Piezoelectric and Ferroelectric Properties of Polyurea-5 Thin Films Prepared by Vapor Deposition Polymerization
,”
J. Appl. Phys.
,
79
(
3
), pp.
1713
1721
.
49.
Wang
,
X. S.
,
Takahashi
,
Y.
,
Iijima
,
M.
, and
Fukada
,
E.
,
1994
, “
Dielectric Relaxation in Polyurea Thin Films Prepared by Vapor Deposition Polymerization
,”
Jpn. J. Appl. Phys.
,
33
(
10R
), pp.
584
587
.
50.
Strong
,
A. B.
,
1997
,
Plastics: Materials and Processing
,
Prentice Hall
,
Upper Saddle River, NJ
.
51.
Groover
,
M. P.
,
2007
,
Fundamentals of Modern Manufacturing Materials, Processes, and Systems, Fourth Edition 2010.Pdf
,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
52.
Wietzke
,
S.
,
Jansen
,
C.
,
Jung
,
T.
,
Reuter
,
M.
,
Baudrit
,
B.
,
Bastian
,
M.
,
Chatterjee
,
S.
, and
Koch
,
M.
,
2009
, “
Terahertz Time-Domain Spectroscopy as a Tool to Monitor the Glass Transition in Polymers
,”
Opt. Express
,
17
(
21
), pp.
19006
19014
.
53.
Zhao
,
Y.
,
Li
,
Z.
,
Liu
,
J.
,
Hu
,
C.
,
Zhang
,
H.
,
Qin
,
B.
, and
Wu
,
Y.
,
2018
, “
Intermolecular Vibrational Modes and H-Bond Interactions in Crystalline Urea Investigated by Terahertz Spectroscopy and Theoretical Calculation
,”
Spectrochim. Acta—Part A Mol. Biomol. Spectrosc.
,
189
, pp.
528
534
.
You do not currently have access to this content.