Abstract

In this present study, both the experimental and numerical investigations are carried out to understand the formability of AA 5052-H32 sheets of 1.5 mm thickness with friction stir spot weld (FSSW). A shock tube experimental facility is utilized in which a rigid hemispherical striker is propelled at a high velocity and deforms the FSSW sheets at high strain rates. In this analysis, the effect of different tool rotational speed and plunge depth on the FS spot welding outputs and forming outputs are understood. Furthermore, DEFORM-3D finite element (FE) code is used to perform FE simulation of both the FS spot welding and forming of the welded sheets interactively. During the forming analysis, a new strategy is followed to identify the rate-dependent mechanical properties that are incorporated during FE simulation. The tensile data obtained from the unwelded section of the sheet deformed using the shock tube is fit to the modified Johnson–Cook (MJC) model. In the case of the FS spot-welded region, a hardness-based multiplying factor is identified and used to obtain stress–strain data by fitting it to MJC model. The predicted temperature evolution during the FSSW is validated with the experimental data and a good correlation has been observed. The predicted material flow phenomenon gives an insight into the joint formation during FSSW. Various forming outputs such as deformation profile, crack pattern, and effective strain distribution predicted by MJC model in combination with Freudenthal damage model are compared with the experimental data, and the results have a fair agreement.

References

1.
Miller
,
W. S.
,
Zhuang
,
L.
,
Bottema
,
J.
,
Wittebrood
,
A.
,
De Smet
,
P.
,
Haszler
,
A.
, and
Vieregge
,
A.
,
2000
, “
Recent Development in Aluminium Alloys for the Automotive Industry
,”
Mater. Sci. Eng., A
,
280
(
1
), pp.
37
49
.
2.
Manladan
,
S. M.
,
Yusof
,
F.
,
Ramesh
,
S.
,
Fadzil
,
M.
,
Luo
,
Z.
, and
Ao
,
S.
,
2017
, “
A Review on Resistance Spot Welding of Aluminum Alloys
,”
Int. J. Adv. Manuf. Technol.
,
90
(
1
), pp.
605
634
.
3.
Cai
,
W.
,
Daehn
,
G.
,
Vivek
,
A.
,
Li
,
J.
,
Khan
,
H.
,
Mishra
,
R. S.
, and
Komarasamy
,
M.
,
2019
, “
A State-of-the-Art Review on Solid-State Metal Joining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031012
.
4.
Badarinarayan
,
H.
,
Shi
,
Y.
,
Li
,
X.
, and
Okamoto
,
K.
,
2009
, “
Effect of Tool Geometry on Hook Formation and Static Strength of Friction Stir Spot Welded Aluminum 5754-O Sheets
,”
Int. J. Mach. Tools Manuf.
,
49
(
11
), pp.
814
823
.
5.
Babu
,
S.
,
Sankar
,
V. S.
,
Ram
,
G. D. J.
,
Venkitakrishnan
,
P. V.
,
Reddy
,
G. M.
, and
Rao
,
K. P.
,
2013
, “
Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014
,”
J. Mater. Eng. Perform.
,
22
(
1
), pp.
71
84
.
6.
Rana
,
P. K.
,
Narayanan
,
R. G.
, and
Kailas
,
S. V.
,
2018
, “
Effect of Rotational Speed on Friction Stir Spot Welding of AA5052-H32/HDPE/AA5052-H32 Sandwich Sheets
,”
J. Mater. Process. Technol.
,
252
, pp.
511
523
.
7.
Barik
,
S. K.
,
Narayanan
,
R. G.
, and
Sahoo
,
N.
,
2022
, “
Formability and Failure Response of AA5052-H32 Thin Sheets With Friction Stir Spot Welds During the Shock Tube-Based Impact Forming
,”
Int. J. Adv. Manuf. Technol.
,
17
, pp.
1
25
.
8.
Bozzi
,
S.
,
Helbert-Etter
,
A. L.
,
Baudin
,
T.
,
Klosek
,
V.
,
Kerbiguet
,
J. G.
, and
Criqui
,
B.
,
2010
, “
Influence of FSSW Parameters on Fracture Mechanisms of 5182 Aluminium Welds
,”
J. Mater. Process. Technol.
,
210
(
11
), pp.
1429
1435
.
9.
Noh
,
W.
,
Koh
,
Y.
,
Chung
,
K.
,
Song
,
J.-H.
, and
Lee
,
M.-G.
,
2018
, “
Influence of Dynamic Loading on Failure Behavior of Spot Welded Automotive Steel Sheets
,”
Int. J. Mech. Sci.
,
144
, pp.
407
426
.
10.
Sun
,
X.
, and
Khaleel
,
M. A.
,
2007
, “
Dynamic Strength Evaluations for Self-piercing Rivets and Resistance Spot Welds Joining Similar and Dissimilar Metals
,”
Int. J. Impact Eng.
,
34
(
10
), pp.
1668
1682
.
11.
Langrand
,
B.
, and
Markiewicz
,
E.
,
2010
, “
Strain-Rate Dependence in Spot Welds: Non-linear Behaviour and Failure in Pure and Combined Modes I/II
,”
Int. J. Impact Eng.
,
37
(
7
), pp.
792
805
.
12.
Kim
,
D.
,
Lee
,
W.
,
Kim
,
J.
,
Kim
,
C.
, and
Chung
,
K.
,
2010
, “
Formability Evaluation of Friction Stir Welded 6111-T4 Sheet With Respect to Joining Material Direction
,”
Int. J. Mech. Sci.
,
52
(
4
), pp.
612
625
.
13.
Hirata
,
T.
,
Oguri
,
T.
,
Hagino
,
H.
,
Tanaka
,
T.
,
Chung
,
S. W.
,
Takigawa
,
Y.
, and
Higashi
,
K.
,
2007
, “
Influence of Friction Stir Welding Parameters on Grain Size and Formability in 5083 Aluminum Alloy
,”
Mater. Sci. Eng., A
,
456
(
1–2
), pp.
344
349
.
14.
Leitao
,
C.
,
Emílio
,
B.
,
Chaparro
,
B. M.
, and
Rodrigues
,
D. M.
,
2009
, “
Formability of Similar and Dissimilar Friction Stir Welded AA 5182-H111 and AA 6016-T4 Tailored Blanks
,”
Mater. Des.
,
30
(
8
), pp.
3235
3242
.
15.
Smerd
,
R.
,
Winkler
,
S.
,
Salisbury
,
C.
,
Worswick
,
M.
,
Lloyd
,
D.
, and
Finn
,
M.
,
2006
, “
High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
541
560
.
16.
Forcellese
,
A.
, and
Simoncini
,
M.
,
2020
, “
High-Speed Deformation of Pinless Fswed Thin Sheets in Aa6082 Alloy
,”
Metals
,
10
(
1
), p.
15
.
17.
Stoffel
,
M.
,
Schmidt
,
R.
, and
Weichert
,
D.
,
2001
, “
Shock Wave-Loaded Plates
,”
Int. J. Solids Struct.
,
38
(
42–43
), pp.
7659
7680
.
18.
Barik
,
S. K.
,
Narayanan
,
R. G.
, and
Sahoo
,
N.
,
2020
, “
Prediction of Forming of AA 5052-H32 Sheets Under Impact Loading and Experimental Validation
,”
J. Mater. Eng. Perform.
,
29
(
6
), pp.
3941
3960
.
19.
Barik
,
S. K.
,
Narayanan
,
R. G.
, and
Sahoo
,
N.
,
2021
, “
Failure Strain and Fracture Prediction During Shock Tube Impact Forming of AA 5052-H32 Sheet
,”
ASME J. Eng. Mater. Technol.
,
143
(
3
), p.
031009
.
20.
Barik
,
S. K.
,
Narayanan
,
R. G.
, and
Sahoo
,
N.
,
2020
, “
Forming Response of AA5052–H32 Sheet Deformed Using a Shock Tube
,”
Trans. Nonferrous Met. Soc. China
,
30
(
3
), pp.
603
618
.
21.
Koohbor
,
B.
,
Kidane
,
A.
,
Lu
,
W. Y.
, and
Sutton
,
M. A.
,
2016
, “
Investigation of the Dynamic Stress-Strain Response of Compressible Polymeric Foam Using a Non-parametric Analysis
,”
Int. J. Impact Eng.
,
91
, pp.
170
182
.
22.
Zhao
,
Y.
,
Liu
,
H.
,
Yang
,
T.
,
Lin
,
Z.
, and
Hu
,
Y.
,
2016
, “
Study of Temperature and Material Flow During Friction Spot Welding of 7B04-T74 Aluminum Alloy
,”
Int. J. Adv. Manuf. Technol.
,
83
(
9–12
), pp.
1467
1475
.
23.
Zhang
,
Z.
,
Yang
,
X.
,
Zhang
,
J.
,
Zhou
,
G.
,
Xu
,
X.
, and
Zou
,
B.
,
2011
, “
Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Spot Welded 5052 Aluminum Alloy
,”
Mater. Des.
,
32
(
8–9
), pp.
4461
4470
.
24.
Bajpei
,
T.
,
Chelladurai
,
H.
, and
Ansari
,
M. Z.
,
2016
, “
Mitigation of Residual Stresses and Distortions in Thin Aluminium Alloy GMAW Plates Using Different Heat Sink Models
,”
J. Manuf. Process.
,
22
, pp.
199
210
.
25.
Fluhrer
,
J.
,
2007
, “
DEFORM 3D Version 6.1 User’s Manual
,”
Scientific Forming Technology Corporation
,
Ohio
.
26.
Buffa
,
G.
,
Hua
,
J.
,
Shivpuri
,
R.
, and
Fratini
,
L.
,
2006
, “
A Continuum Based Fem Model for Friction Stir Welding—Model Development
,”
Mater. Sci. Eng., A
,
419
(
1–2
), pp.
389
396
.
27.
Wagoner
,
R. H.
, and
Chenot
,
J.-L.
,
1996
,
Fundamentals of Metal Forming
,
John Wiley & Sons Inc.
,
New York
.
28.
Song
,
P.
,
Li
,
W.
,
Wang
,
X.
, and
Xu
,
W.
,
2019
, “
Study on Mechanical Properties and Constitutive Model of 5052 Aluminium Alloy
,”
Mater. Sci. Technol.
,
35
(
8
), pp.
916
924
.
29.
Tian
,
Y.
,
Huang
,
L.
,
Ma
,
H.
, and
Li
,
J.
,
2014
, “
Establishment and Comparison of Four Constitutive Models of 5A02 Aluminium Alloy in High-Velocity Forming Process
,”
Mater. Des.
,
54
, pp.
587
597
.
30.
Deng
,
H.
,
Mao
,
Y.
,
Li
,
G.
, and
Cui
,
J.
,
2019
, “
A Study of Electromagnetic Free Forming in AA5052 Using Digital Image Correlation Method and FE Analysis
,”
J. Manuf. Process.
,
37
, pp.
595
605
.
31.
Khodko
,
O.
,
Zaytsev
,
V.
,
Sukaylo
,
V.
,
Verezub
,
N.
, and
Scicluna
,
S.
,
2015
, “
Experimental and Numerical Investigation of Processes That Occur During High Velocity Hydroforming Technologies: An Example of Tubular Blank Free Bulging During Hydrodynamic Forming
,”
J. Manuf. Process.
,
20
, pp.
304
313
.
32.
Sheng
,
Z. Q.
, and
Mallick
,
P. K.
,
2017
, “
Predicting Sheet Forming Limit of Aluminum Alloys for Cold and Warm Forming by Developing a Ductile Failure Criterion
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111018
.
33.
Jain
,
R.
,
Pal
,
S. K.
, and
Singh
,
S. B.
,
2017
, “
Finite Element Simulation of Temperature and Strain Distribution During Friction Stir Welding of AA2024 Aluminum Alloy
,”
J. Inst. Eng. Ser. C
,
98
(
1
), pp.
37
43
.
34.
Yang
,
Q.
,
Mironov
,
S.
,
Sato
,
Y. S.
, and
Okamoto
,
K.
,
2010
, “
Material Flow During Friction Stir Spot Welding
,”
Mater. Sci. Eng., A
,
527
(
16–17
), pp.
4389
4398
.
35.
Yuan
,
W.
,
Mishra
,
R. S.
,
Carlson
,
B.
,
Verma
,
R.
, and
Mishra
,
R. K.
,
2012
, “
Material Flow and Microstructural Evolution During Friction Stir Spot Welding of AZ31 Magnesium Alloy
,”
Mater. Sci. Eng., A
,
543
, pp.
200
209
.
You do not currently have access to this content.