Abstract

Fe–Co–2V (Hiperco®2 equivalent) is a soft ferromagnetic material that is commonly used for electrical components that require robust magnetic performance. Despite the excellent magnetic properties of Fe–Co–2V, it often exhibits low strength, ductility, and workability due to an ordered B2 microstructure. The mechanical properties exhibit considerable dependency on grain size and degree of order, which are influenced by processing methods. A thorough understanding of Fe–Co–2V’s fatigue performance is required to predict mechanical reliability under operating loads; however, limited fatigue data currently exist for Fe–Co alloys. This work characterizes the fatigue properties of wrought Fe–Co–2V through strain-controlled fatigue testing and fractography. Young’s modulus, ultimate strength, and yield stress were determined through monotonic tension tests. The fatigue behavior was quantified using fully reversed, strain-controlled fatigue testing for applied strain amplitudes ranging from 0.10% to 1.00%. Subsequently, the Coffin–Manson strain-life curve was fit to the experimental data. Failure mechanisms were investigated through fractography with a scanning electron microscope. Inspection of the failure surfaces revealed that crack initiation occurred at defects located on or near the specimen surface with a localized region of crack propagation prior to the transgranular cleavage fracture. Additionally, two material models were calibrated from the experimental static and cyclic experimental testing. The characterization of the fatigue behavior of wrought Fe–Co–2V presented herein will aid in the fatigue analysis of Fe–Co–2V components and the development of analytical fatigue modeling methodologies.

References

1.
Sundar
,
R. S.
, and
Deevi
,
S. C.
,
2005
, “
Soft Magnetic FeCo Alloys: Alloy Development, Processing, and Properties
,”
Int. Mater. Rev.
,
50
(
3
), pp.
157
192
.
2.
Chen
,
C. W.
,
1961
, “
Metallurgy and Magnetic Properties of an Fe–Co–V Alloy
,”
J. Appl. Phys.
,
32
(
3
), pp.
S348
S355
.
3.
Sourmail
,
T.
,
2005
, “
Near Equiatomic FeCo Alloys: Constitution, Mechanical and Magnetic Properties
,”
Prog. Mater. Sci.
,
50
(
7
), pp.
816
880
.
4.
Quigley
,
R. E. J.
,
1993
, “
More Electric Aircraft
,” pp.
906
911
.
5.
Boettner
,
R. C.
,
Stoloff
,
N. S.
, and
Davies
,
R. G.
,
1966
, “
Effect of Long-Range Order on Fatigue
,”
AIME Met. Soc. Trans.
,
236
(
1
), pp.
131
133
.
6.
Foiles
,
S. M.
,
Stoloff
,
N. S.
,
Koch
,
C. C.
,
Liu
,
C. T.
, and
Izumi
,
O.
,
1987
, “High-Temperature Ordered Intermetallic Alloys II,”
MRS Symposium Proceedings
,
Vol. 81
,
N. S.
Stoloff
,
C. C.
Koch
,
C. T.
Liu
, and
O.
Izumi
, eds.,
MRS
,
Pittsburgh, PA
, p.
51
.
7.
Stoloff
,
N. S.
,
Choe
,
S. J.
, and
Rajan
,
K.
,
1992
, “
The Influence of Long Range Order on Fatigue Crack Initiation in an FeCo–V Intermetallic Compound
,”
Scr. Metall. Mater.
,
26
(
2
), pp.
331
336
.
8.
Elmen
,
G. W.
,
1929
, “
Magnetic Material and Appliance
,” U.S. Patent No. 1,739,752A.
9.
White
,
J. H.
, and
Wahl
,
C. V.
,
1932
, “
Workable Magnetic Compositions Containing Principally Iron and Cobalt
,” Google Patents, June 14.
10.
Gould
,
H. L. B.
, and
Wenny
,
D. H.
,
1957
, “
Supermendur: A New Rectangular-Loop Magnetic Material
,”
Electr. Eng.
,
76
(
3
), pp.
208
211
.
11.
Coffin
,
L. F.
, Jr.
,
1954
, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Trans. Am. Soc. Mech. Eng. New York
,
76
, pp.
931
950
. https://ci.nii.ac.jp/naid/10012801028/
12.
Manson
,
S. S.
,
1953
,
Behavior of Materials Under Conditions of Thermal Stress
,
Vol. 2933
,
National Advisory Committee for Aeronautics
, Lewis Flight Propulsion Laboratory, Cleveland, OH.
13.
Kuruvilla
,
A. K.
,
1985
,
Crack Growth in Ordered Alloys. [(Fe, Ni)/sub 3/V and FeCo-2% V]
,
Rensselaer Polytechnic Institute
,
Troy, NY
.
14.
Scherzinger
,
W. M.
,
Lester
,
B. T.
, and
Newell
,
P.
,
2016
, “
Library of Advanced Materials for Engineering (LAMÉ 4.40)
,” Sandia National Laboratories, Report No. SAND2016-2774 O.
15.
Bammann
,
D. J.
,
Chiesa
,
M. L.
, and
Johnson
,
G. C.
,
1996
, “
Modeling Large Deformation and Failure in Manufacturing Processes
,”
Theor. Appl. Mech.
,
9
, pp.
359
376
.
16.
Bammann
,
D. J.
,
1990
, “
Modeling Temperature and Strain Rate Dependent Large Deformations of Metals
,”
ASME Appl. Mech. Rev.
,
43
(
5S
), pp.
S312
S319
.
17.
ASTM E606/E606M-12
,
2012
, “
Standard Test Method for Strain-Controlled Fatigue Testing
,”
Book Standard
,
Vol. 3,
ASTM International
,
West Conshohocken, PA
.
18.
Clegg
,
D. W.
, and
Buckley
,
R. A.
,
1973
, “
The Disorder → Order Transformation in Iron–Cobalt-Based Alloys
,”
Met. Sci. J.
,
7
(
1
), pp.
48
54
.
19.
Dowling
,
N. E.
,
2012
,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
,
Pearson
, https://www.pearson.com/us/higher-education/product/Dowling-Mechanical-Behavior-of-Materials-4th-Edition/ 9780131395060.html
20.
Stone
,
C. M.
,
Wellman
,
G. W.
, and
Krieg
,
R. D.
,
1990
,
A Vectroized Elastic/Plastic Power Law Hardening Material Model Including Lueders Strain
,
Sandia National Laboratories
,
Albuquerque, NM
.
22.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2005
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
,
47
(
1
), pp.
99
131
.
23.
Luersen
,
M. A.
, and
Le Riche
,
R.
,
2004
, “
Globalized Nelder–Mead Method for Engineering Optimization
,”
Comput. Struct.
,
82
(
23–26
), pp.
2251
2260
.
24.
Wales
,
D. J.
, and
Doye
,
J. P. K.
,
1997
, “
Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms
,”
J. Phys. Chem. A
,
101
(
28
), pp.
5111
5116
.
25.
scipy.optimize.brute
,” https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html, Accessed July 10, 2018.
26.
Song
,
B.
,
Sanborn
,
B.
,
Susan
,
D.
,
Johnson
,
K.
,
Dabling
,
J.
,
Carroll
,
J.
,
Brink
,
A.
,
Grutzik
,
S.
, and
Kustas
,
A. B.
,
2020
, “
Dynamic Tensile Response of a Fe–49Co–2V Alloy at Various Strain Rates and Temperatures
,”
J. Dyn. Behav. Mater.
,
6
, pp.
224
235
.
27.
Hansen
,
N.
,
2004
, “
Hall–Petch Relation and Boundary Strengthening
,”
Scr. Mater.
,
51
(
8
), pp.
801
806
.
28.
Jordan
,
K. R.
, and
Stoloff
,
N. S.
,
1969
,
Plastic Deformation and Fracture in FeCo–2 PCT V
,
Rensselaer Polytechnic Institute
,
Troy, NY
.
29.
Susan
,
D. F.
,
Crenshaw
,
T. B.
,
Rodelas
,
J.
,
Robino
,
C. V.
, and
Greenwood
,
W. H.
,
2014
,
Hall–Petch Behavior of Fe–Co–V Soft Magnetic Alloy Barstock
,
Sandia National Lab
oratories,
Albuquerque, NM
.
30.
Zhao
,
L.
, and
Baker
,
I.
,
1994
, “
The Effect of Grain Size and Fe:Co Ratio on the Room Temperature Yielding of FeCo
,”
Acta Metall. Mater.
,
42
(
6
), pp.
1953
1958
.
31.
Susan
,
D. F.
,
Jozaghi
,
T.
,
Karaman
,
I.
, and
Rodelas
,
J. M.
,
2018
, “
Equal Channel Angular Extrusion for Bulk Processing of Fe–Co–2V Soft Magnetic Alloys, Part I: Processing and Mechanical Properties
,”
J. Mater. Res.
,
33
(
15
), pp.
2168
2175
.
32.
Kustas
,
A. B.
,
Susan
,
D. F.
,
Johnson
,
K. L.
,
Whetten
,
S. R.
,
Rodriguez
,
M. A.
,
Dagel
,
D. J.
,
Michael
,
J. R.
,
Keicher
,
D. M.
, and
Argibay
,
N.
,
2018
, “
Characterization of the Fe–Co–1.5V Soft Ferromagnetic Alloy Processed by Laser Engineered Net Shaping (LENS)
,”
Addit. Manuf.
,
21
, pp.
41
52
.
33.
Babuska
,
T. F.
,
Wilson
,
M. A.
,
Johnson
,
K. L.
,
Whetten
,
S. R.
,
Curry
,
J. F.
,
Rodelas
,
J. M.
,
Atkinson
,
C.
, et al
,
2019
, “
Achieving High Strength and Ductility in Traditionally Brittle Soft Magnetic Intermetallics Via Additive Manufacturing
,”
Acta Mater.
,
180
, pp.
149
157
.
34.
Babuska
,
T. F.
,
Johnson
,
K. L.
,
Verdonik
,
T.
,
Subia
,
S. R.
,
Krick
,
B. A.
,
Susan
,
D. F.
, and
Kustas
,
A. B.
,
2020
, “
An Additive Manufacturing Design Approach to Achieving High Strength and Ductility in Traditionally Brittle Alloys Via Laser Powder bed Fusion
,”
Addit. Manuf.
,
34
, p.
101187
.
35.
Boyce
,
B. L.
,
Salzbrenner
,
B. C.
,
Rodelas
,
J. M.
,
Swiler
,
L. P.
,
Madison
,
J. D.
,
Jared
,
B. H.
, and
Shen
,
Y. L.
,
2017
, “
Extreme-Value Statistics Reveal Rare Failure-Critical Defects in Additive Manufacturing
,”
Adv. Eng. Mater.
,
19
(
8
), p.
1700102
.
36.
Salzbrenner
,
B. C.
,
Rodelas
,
J. M.
,
Madison
,
J. D.
,
Jared
,
B. H.
,
Swiler
,
L. P.
,
Shen
,
Y. L.
, and
Boyce
,
B. L.
,
2017
, “
High-Throughput Stochastic Tensile Performance of Additively Manufactured Stainless Steel
,”
J. Mater. Process. Technol.
,
241
, pp.
1
12
.
37.
McDowell
,
D. L.
,
Gall
,
K.
,
Horstemeyer
,
M. F.
, and
Fan
,
J.
,
2003
, “
Microstructure-Based Fatigue Modeling of Cast A356-T6 Alloy
,”
Eng. Fract. Mech.
,
70
(
1
), pp.
49
80
.
38.
Xue
,
Y.
,
Burton
,
C. L.
,
Horstemeyer
,
M. F.
,
McDowell
,
D. L.
, and
Berry
,
J. T.
,
2007
, “
Multistage Fatigue Modeling of Cast A356-T6 and A380-F Aluminum Alloys
,”
Metall. Mater. Trans. B
,
38
(
4
), pp.
601
606
.
39.
Xue
,
Y.
,
Horstemeyer
,
M. F.
,
McDowell
,
D. L.
,
El Kadiri
,
H.
, and
Fan
,
J.
,
2007
, “
Microstructure-Based Multistage Fatigue Modeling of a Cast AE44 Magnesium Alloy
,”
Int. J. Fatigue
,
29
(
4
), pp.
666
676
.
40.
Xue
,
Y.
,
McDowell
,
D. L.
,
Horstemeyer
,
M. F.
,
Dale
,
M. H.
, and
Jordon
,
J. B.
,
2007
, “
Microstructure-Based Multistage Fatigue Modeling of Aluminum Alloy 7075-T651
,”
Eng. Fract. Mech.
,
74
(
17
), pp.
2810
2823
.
41.
Fan
,
J.
,
McDowell
,
D. L.
,
Horstemeyer
,
M. F.
, and
Gall
,
K.
,
2003
, “
Cyclic Plasticity at Pores and Inclusions in Cast Al–Si Alloys
,”
Eng. Fract. Mech.
,
70
(
10
), pp.
1281
1302
.
You do not currently have access to this content.