The mechanical threshold stress (MTS) model is not commonly used in industrial applications due to its complexity. The Zener–Hollomon parameter Z was utilized to develop a simplified and compact formulation similar to the MTS model. The predictions of the proposed formulation are compared to the results obtained by the original MTS model and experimental data. The flow stresses of three cold-rolled steels frequently used in automotive industries were analyzed for both formulations over a wide range of strain rates (8.103s1ε¯̇p103s1).

1.
Klepaczko
,
J. R.
, 1975, “
Thermally Activated Flow and Strain Rate History Effects for Some Polycrystalline FCC Metals
,”
Mater. Sci. Eng.
0025-5416,
18
, pp.
121
135
.
2.
Estrin
,
Y.
, and
Mecking
,
H.
, 1984, “
A Unified Phenomenological Description of Work-Hardening and Creep Based on One-Parameter Models
,”
Acta Metall.
0001-6160,
32
, pp.
57
70
.
3.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
, 1986, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
0021-8979,
61
(
5
), pp.
1816
1825
.
4.
Estrin
,
Y.
,
Tóth
,
L. S.
,
Molinari
,
A.
, and
Bréchet
,
Y.
, 1998, “
A Dislocation-Based Model for all Hardening Stages in Large Strain Deformation
,”
Acta Mater.
1359-6454,
46
(
15
), pp.
5509
5522
.
5.
Liang
,
R.
, and
Khan
,
A. S.
, 1999, “
A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperature
,”
Int. J. Plast.
0749-6419,
15
, pp.
963
980
.
6.
Follansbee
,
P. S.
, and
Kocks
,
U. F.
, 1988, “
A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable
,”
Acta Metall.
0001-6160,
36
, pp.
81
93
.
7.
Varshni
,
Y. P.
, 1970, “
Temperature Dependence of the Elastic Constants
,”
Phys. Rev. B
0556-2805,
2
, pp.
3952
3958
.
8.
Gilman
,
J. J.
, 1968, “
Dislocation Dynamics and Response of Materials to Impact
,”
Appl. Mech. Rev.
0003-6900,
21
, pp.
767
783
.
9.
Kocks
,
U. F.
,
Argon
,
A. S.
, and
Ashby
,
M. F.
, 1975, “
Thermodynamics and Kinematics of Slip
,”
Prog. Mater. Sci.
0079-6425,
19
, pp.
230
265
.
10.
Goto
,
D. M.
,
Bingert
,
J. F.
,
Chen
,
S. R.
,
Gray
, III,
G. T.
, and
Garrett
,
R. K.
, 2000, “
The Mechanical Threshold Stress Constitutive-Strength Model Description of HY-100 Steel
,”
Metall. Mater. Trans. A
1073-5623,
31
, pp.
1985
1996
.
11.
Kocks
,
U. F.
, 1976, “
Laws for Strain-Hardening and Low-Temperature Creep
,”
ASME J. Eng. Mater. Technol.
0094-4289,
98
, pp.
76
85
.
12.
Canova
,
G. R.
, and
Kubin
,
L. P.
, 1991, “
Continuum Models and Discrete Systems
,” in
Maugin
,
G. A.
editor,
Longman Scientific and Technical
, pp.
93
101
.
13.
Blewitt
,
T. H.
,
Coltman
,
R. R.
, and
Redman
,
J. K.
, 1955,
Dislocations and Mechanical Properties of Crystals
,
Wiley
, New York.
14.
Mecking
,
H.
, and
Estrin
,
Y.
, 1987, “
Constitutive Relations and Their Physical Basis
,”
S. J.
Andersen
,
J. B.
Bilde-Sorensen
,
N.
Hansen
,
T.
Leffers
,
H.
Lilholt
,
O. B.
Pedersen
, and
B.
Ralph
, eds.,
Riso National Laboratory
,
Roskilde
, Denmark, pp.
123
145
.
15.
Zener
,
C.
, and
Hollomon
,
J. H.
, 1944, “
Effect of Strain Rate Upon the Plastic Flow of Steel
,”
J. Appl. Phys.
0021-8979,
15
, pp.
22
32
.
16.
Cambell
,
J. D.
, 1968, “
Plastic Instability in Rate-Dependent Materials
,”
J. Mech. Phys. Solids
0022-5096,
15
, pp.
359
368
.
17.
Klepaczko
,
J. R.
, 1968, “
Generalized Conditions for Stability in Tension Tests
,”
Int. J. Mech. Sci.
0020-7403,
10
, pp.
297
313
.
18.
Seeger
,
A.
, 1957,
Dislocations and Mechanical Properties of Crystals
,
Wiley
, New York.
19.
Conrad
,
H.
, 1964, “
Thermally Activated Deformation of Metals
,”
J. Met.
0148-6608,
16
, pp.
582
588
.
20.
Rusinek
,
A.
, and
Zaera
,
R.
, 2007, “
Finite Element Simulation of Steel Ring Fragmentation Under Radial Expansion
,”
Int. J. Impact Eng.
0734-743X,
34
, pp.
799
822
.
21.
Uenishi
,
A.
, and
Teodosiu
,
C.
, 2004, “
Constitutive Modeling of the High Strain Rate Behavior of Interstitial-Free Steel
,”
Int. J. Plast.
0749-6419,
20
, pp.
915
936
.
22.
Klepaczko
,
J. R.
, 1987, “
A Practical Stress-Strain-Strain Rate-Temperature Constitutive Relation of the Power Form
,”
J. Mech. Work. Technol.
0378-3804,
15
, pp.
143
165
.
23.
Klepaczko
,
J. R.
, 1988, “
A General Approach to Rate Sensitivity and Constitutive Modeling of FCC and BCC Metals
,”
Impact: Effects of Fast Transient Loadings
,
Balkema
, Rotterdam, pp.
3
35
.
24.
Tanne
,
A. B.
,
McGinty
,
R. D.
, and
McDowell
,
D. L.
, 1999, “
Modeling Temperature and Strain Rate History Effects in OFHC Cu
,”
Int. J. Plast.
0749-6419,
15
(
6
), pp.
575
603
.
25.
Voce
,
E.
, 1948, “
The Relationship Between Stress and Strain for Homogenous Deformation
,”
J. Inst. Met.
0020-2975,
74
, pp.
537
562
.
26.
Eleiche
,
A. M.
, and
Campbell
,
J. D.
, 1976, “
The Influence of Strain Rate History and Temperature on the Shear Strength of Copper, Titanium, and Mild-Steel
,” Technical Report No. AFML-TR-76-90, Air Force Materials Laboratory, Dayton.
27.
Dorn
,
J. E.
,
Goldberg
,
A.
, and
Tietz
,
B.
1949, “
The Effect of Thermal-Mechanical History on the Strain Hardening of Metals
,”
Trans. Am. Inst. Min., Metall. Pet. Eng.
0096-4778,
180
, pp.
205
224
.
You do not currently have access to this content.