This paper presents a computational method to design a compliant finger for robotic manipulations. As traditional mechanical fingers require bulky electromagnetic motors and numerous relative moving parts to achieve dexterous motion, we propose a class of fingers; the manipulation of which relies on finger deflections. These compliant fingers are actuated by shape memory alloy (SMA) wires that exhibit high work-density, frictionless, and quiet operations. The combination of compliant members with embedded SMA wires makes the finger more compact and lightweight. Various SMA wire layouts are investigated to reduce their response time while maintaining sufficient output force. The mathematical models of finger deflection caused by SMA contraction are then derived along with experimental validations. As finger shapes are essential to the range of deflected motion and output force, we find its optimal initial shapes through the use of a shape parametrization technique. We further illustrate our method by designing a humanoid finger that is capable of three-dimensional manipulation. Since compliant fingers can be fabricated monolithically, we expect the proposed design method to be utilized for applications of various scales.

1.
Yao
,
W.
, and
Dai
,
J. S.
, 2008, “
Dexterous Manipulation of Origami Cartons With Robotic Fingers Based on the Interactive Configuration Space
,”
ASME J. Mech. Des.
0161-8458,
130
(
2
), p.
022303
.
2.
Lovchik
,
C. S.
, and
Diftler
,
M. A.
, 1999, “
The Robonaut Hand: A Dexterous Robot Hand for Space
,”
Proceedings of the IEEE ICRA
, Detroit, MI, pp.
907
912
.
4.
Jacobsen
,
S. C.
,
Wood
,
J. E.
,
Knutti
,
D. F.
, and
Biggers
,
K. B.
, 1984, “
The Utah/MIT Dexterous Hand: Work in Progress
,”
Int. J. Robot. Res.
0278-3649,
3
(
4
), pp.
21
50
.
5.
Salisbury
,
J. K.
, and
Craig
,
J. J.
, 1982, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Robot. Res.
0278-3649,
1
(
1
), pp.
4
17
.
6.
Liu
,
H.
,
Meusel
,
P.
,
Seitz
,
N.
,
Willberg
,
B.
,
Hirzinger
,
G.
,
Jin
,
M. H.
,
Liu
,
Y. W.
,
Wei
,
R.
, and
Xie
,
Z. W.
, 2007, “
The Modular Multisensory DLR-HIT-Hand
,”
Mech. Mach. Theory
0094-114X,
42
(
5
), pp.
612
615
.
7.
Bekey
,
G. A.
,
Liu
,
H.
,
Tomovic
,
R.
, and
Karplus
,
W. J.
, 1993, “
Knowledge-Based Control of Grasping in Robot Hands Using Heuristics From Human Motor Skills
,”
IEEE Trans. Rob. Autom.
1042-296X,
9
(
6
), pp.
709
722
.
8.
Dechev
,
N.
,
Cleghorn
,
W. L.
, and
Naumann
,
S.
, 2001, “
Multiple Finger, Passive Grasp Prosthetic Hand
,”
Mech. Mach. Theory
0094-114X,
36
(
10
), pp.
1157
1173
.
9.
Carrozza
,
M. C.
,
Suppo
,
C.
,
Sebastiani
,
F.
,
Massa
,
B.
,
Vecchi
,
F.
,
Lazzarini
,
R.
,
Cutkosky
,
M. R.
, and
Dario
,
P.
, 2004, “
The SPRING Hand: Development of a Self-Adaptive Prosthesis for Restoring Natural Grasping
,”
Auton. Rob.
,
16
(
2
), pp.
125
141
. 0929-5593
10.
Birglen
,
L.
, and
Gosselin
,
C. M.
, 2006, “
Geometric Design of Three-Phalanx Underactuated Fingers
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
356
364
.
11.
Schulz
,
S.
,
Pylatiuk
,
C.
, and
Bretthauer
,
G.
, 2001, “
A New Ultralight Anthropomorphic Hand
,”
Proceedings of the IEEE ICRA
, Seoul, Korea, May.
13.
De Laurentis
,
K. J.
, and
Mavroidis
,
C.
, 2002, “
Mechanical Design of a Shape Memory Alloy Actuated Prosthetic Hand
,”
Technol. Health Care
,
10
, pp.
91
106
. 0928-7329
14.
Bundhoo
,
V.
, and
Park
,
E. J.
, 2005, “
Design of an Artificial Muscle Actuated Finger Towards Biomimetic Prosthetic Hands
,”
Proceedings of the 12th ICAR International Conference on Advanced Robotics
, Seattle, WA, pp.
368
375
.
15.
Maeno
,
T.
, and
Hino
,
T.
, 2006, “
Miniature Five-Fingered Robot Hand Driven by Shape Memory Alloy Actuators
,”
Proceedings of the 12th IASTED International Conference on Robotics and Applications
, Honolulu, HI.
16.
Kohl
,
M.
,
Just
,
E.
,
Pfleging
,
W.
, and
Miyazaki
,
S.
, 2000, “
SMA Microgripper With Integrated Antagonism
,”
Sens. Actuators, A
0924-4247,
83
(
1–3
), pp.
208
213
.
17.
Shameli
E.
,
Craig
,
D. G.
, and
Khamesee
,
M. B.
, 2006, “
Design and Implementation of a Magnetically Suspended Microrobotic Pick-And-Place System
,”
J. Appl. Phys.
0021-8979,
99
, p.
08P509
.
18.
Potratz
,
J.
,
Yang
,
J.
,
Abdel-Malek
,
K.
,
Pitarch
,
E. P.
,
Grosland
,
N.
, 2005, “
A Light Weight Compliant Hand Mechanism With High Degrees of Freedom
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
6
), pp.
934
945
.
19.
Lotti
,
F.
,
Tiezzi
,
P.
,
Vassura
,
G.
,
Biagiotti
,
L.
,
Palli
,
G.
, and
Melchiorri
,
C.
, 2005, “
Development of UB Hand 3: Early Results
,”
Proceedings of the IEEE ICRA
, pp.
4499
4504
.
20.
Carrozza
,
M. C.
,
Cappiello
,
G.
,
Stellin
,
G.
,
Zaccone
,
F.
,
Vecchi
,
F.
,
Micera
,
S.
, and
Dario
,
P.
, 2005, “
A Cosmetic Prosthetic Hand With Tendon Driven Under-Actuated Mechanism and Compliant Joints: Ongoing Research and Preliminary Results
,”
Proceedings of the IEEE ICRA
, Barcelona, Spain.
21.
Konishi
,
S.
,
Nokata
,
M.
,
Jeong
,
O. C.
,
Kusuda
,
S.
,
Sakakibara
,
T.
,
Kuwayama
,
M.
, and
Tsutsumi
,
H.
, 2006, “
Pneumatic Micro Hand and Miniaturized Parallel Link Robot for Micro Manipulation Robot System
,”
Proceedings of the IEEE ICRA
, pp.
1036
1041
.
22.
Abe
,
R.
,
Takemura
,
K.
,
Edamura
,
K.
, and
Yokota
,
S.
, 2007, “
Concept of a Micro Finger Using Electro-Conjugate Fluid and Fabrication of a Large Model Prototype
,”
Sens. Actuators, A
,
136
(
2
), pp.
629
637
. 0924-4247
24.
Zak
,
A. J.
,
Cartmell
,
M. P.
,
Ostachowicz
,
W. M.
, and
Wiercigroch
,
M.
, 2003, “
One-Dimensional Shape Memory Alloy Models for Use With Reinforced Composite Structures
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
338
346
.
25.
Lan
,
C. -C.
, and
Lee
,
K. -M.
, 2006, “
Generalized Shooting Method for Analyzing Compliant Mechanisms With Curved Members
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
765
775
.
26.
Lan
,
C. -C.
, and
Cheng
,
Y. -J.
, 2008, “
Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
072304
.
27.
Lobontiu
,
N.
, and
Garcia
,
E.
, 2003, “
Two-Axis Flexure Hinges With Axially-Collocated and Symmetric Notches
,”
Comput. Struct.
0045-7949,
81
(
13
), pp.
1329
1341
.
28.
Ma
,
N.
,
Song
,
G.
, and
Lee
,
H. -J.
, 2004, “
Position Control of Shape Memory Alloy Actuators With Internal Electrical Resistance Feedback Using Neural Networks
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
777
783
.
29.
Ikuta
,
K.
,
Tsukamoto
,
M.
, and
Hirose
,
S.
, 1988, “
Shape Memory Alloy Servo Actuator System With Electric Resistance Feedback and Application for Active Endoscope
,”
Proceedings of the IEEE ICRA
, pp.
427
430
.
You do not currently have access to this content.