Time-dependent reliability is the probability that a system will perform its intended function successfully for a specified time. Unless many and often unrealistic assumptions are made, the accuracy and efficiency of time-dependent reliability estimation are major issues which may limit its practicality. Monte Carlo simulation (MCS) is accurate and easy to use, but it is computationally prohibitive for high dimensional, long duration, time-dependent (dynamic) systems with a low failure probability. This work is relevant to systems with random parameters excited by stochastic processes. Their response is calculated by time integrating a set of differential equations at discrete times. The limit state functions are, therefore, explicit in time and depend on time-invariant random variables and time-dependent stochastic processes. We present an improved subset simulation with splitting approach by partitioning the original high dimensional random process into a series of correlated, short duration, low dimensional random processes. Subset simulation reduces the computational cost by introducing appropriate intermediate failure sub-domains to express the low failure probability as a product of larger conditional failure probabilities. Splitting is an efficient sampling method to estimate the conditional probabilities. The proposed subset simulation with splitting not only estimates the time-dependent probability of failure at a given time but also estimates the cumulative distribution function up to that time with approximately the same cost. A vibration example involving a vehicle on a stochastic road demonstrates the advantages of the proposed approach.

References

1.
Savage
,
G. J.
, and
Son
,
Y. K.
,
2009
, “
Dependability-Based Design Optimization of Degrading Engineering Systems
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011002
.10.1115/1.3013295
2.
Ascher
,
H.
, and
Feingold
,
H.
,
1984
,
Repairable Systems Reliability
,
Marcel Dekker
,
New York
.
3.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost Using Time-dependent Reliability
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091008
.10.1115/1.4002200
4.
Son
,
Y. K.
,
Chang
,
S. W.
, and
Savage
,
G. J.
,
2007
, “
Economic-Based Design of Engineering Systems With Degrading Components Using Probabilistic Loss of Quality
,”
J. Mech. Sci. Technol.
,
21
(
2
), pp.
225
234
.10.1007/BF02916283
5.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost and Preventive Maintenance Using Time-Dependent Reliability
,”
Adv. Mater. Res.
,
118–120
, pp.
10
16
.10.4028/www.scientific.net/AMR.118-120.10
6.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Saf. Syst.
,
84
(
1
), pp.
75
86
.10.1016/j.ress.2003.10.005
7.
Hagen
,
O.
, and
Tvedt
,
L.
,
1991
, “
Vector Process Out-Crossing as Parallel System Sensitivity Measure
,”
ASCE J. Eng. Mech.
,
121
(
10
), pp.
2201
2210
.10.1061/(ASCE)0733-9399(1991)117:10(2201)
8.
Rice
,
S. O.
,
1954
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
, pp.
282
332
. [Re-published in: Wax, N., ed., 1954, Selected Papers on Noise and Stochastic Processes, Dover, New York].10.1002/j.1538-7305.1944.tb00874.x
9.
Rackwitz
,
R.
,
1998
, “
Computational Techniques in Stationary and Non-Stationary Load Combination—A Review and Some Extensions
,”
J. Struct. Eng.
,
25
(
1
), pp.
1
20
.
10.
Schueller
,
G. I.
,
1997
, “
A State-of-the-Art Report on Computational Stochastic Mechanics
,”
Probab. Eng. Mech.
,
12
(
4
), pp.
197
321
.10.1016/S0266-8920(97)00003-9
11.
Engelung
,
S.
,
Rackwitz
,
R.
, and
Lange
,
C.
,
1995
, “
Approximations of First Passage Times for Differentiable Processes Based on Higher Order Threshold Crossings
,”
Probab. Eng. Mech.
,
10
(
1
), pp.
53
60
.10.1016/0266-8920(94)00008-9
12.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-Variant Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
356
362
.10.1080/15732470701270058
13.
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Time-dependent Reliability Analysis for Function Generator Mechanisms
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031005
.10.1115/1.4003539
14.
Shinozuka
,
M.
,
1964
, “
Probability of Failure Under Random Loading
,”
ASCE J. Eng. Mech.
,
90
, pp.
147
171
.
15.
Son
,
Y. K.
, and
Savage
,
G. J.
,
2007
, “
Set Theoretic Formulation of Performance Reliability of Multiple Response Time-Variant Systems Due to Degradations in System Components
,”
Qual. Reliab. Eng. Int.
,
23
(
2
), pp.
171
188
.10.1002/qre.783
16.
Singh
,
A.
, and
Mourelatos
,
Z. P.
,
2010
, “
On the Time-dependent Reliability of Non-Monotonic, Non-Repairable Systems
,”
SAE Int. J. Mater. Manuf.
,
3
(
1
), pp.
425
444
.10.4271/2010-01-0696
17.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
A Sampling Approach to Extreme Value Distribution for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
135
(
7
), p.
071003
.10.1115/1.4023925
18.
Hu
,
Z.
,
Li
,
H.
,
Du
,
X.
, and
Chandrashekhara
,
K.
,
2013
, “
Simulation-Based Time-dependent Reliability Analysis for Composite Hydrokinetic Turbine Blades
,”
Struct. Multidiscip. Optim.
,
47
(
5
), pp.
765
781
.10.1007/s00158-012-0839-8
19.
Li
,
J.
, and
Mourelatos
,
Z. P.
,
2009
, “
Time-Dependent Reliability Estimation for Dynamic Problems Using a Niching Genetic Algorithm
,”
ASME J. Mech. Des.
,
131
(
7
), p.
070201
.10.1115/1.3155167
20.
Hu
,
Z.
, and
Du
,
X.
,
2012
, “
Reliability Analysis for Hydrokinetic Turbine Blades
,”
Renewable Energy
,
48
, pp.
251
262
.10.1016/j.renene.2012.05.002
21.
Madsen
,
P. H.
, and
Krenk
,
S.
,
1984
, “
An Integral Equation Method for the First Passage Problem in Random Vibration
,”
J. Appl. Mech.
,
51
, pp.
674
679
.10.1115/1.3167691
22.
Melchers
,
R. E.
,
1989
, “
Importance Sampling in Structural Systems
,”
Struct. Saf.
,
6
, pp.
3
10
.10.1016/0167-4730(89)90003-9
23.
Au
,
S. K.
, and
Beck
,
J. L.
,
1999
, “
A New Adaptive Importance Sampling Scheme
,”
Struct. Saf.
,
21
, pp.
135
158
.10.1016/S0167-4730(99)00014-4
24.
Singh
,
A.
, and
Mourelatos
,
Z. P.
,
2010
, “
Time-Dependent Reliability Estimation for Dynamic Systems Using a Random Process Approach
,”
SAE Int. J. Mater. Manuf.
,
3
(
1
), pp.
339
355
.10.4271/2010-01-0644
25.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and E.
Nikolaidis
,
E.
,
2011
, “
Time-Dependent Reliability of Random Dynamic Systems Using Time-Series Modeling and Importance Sampling
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
929
946
.10.4271/2011-01-0728
26.
Au
,
S. K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probability in High Dimensions Simulation
,”
Probab. Eng. Mech.
,
16
, pp.
263
277
.10.1016/S0266-8920(01)00019-4
27.
Au
,
S. K.
, and
Beck
,
J. L.
,
2003
, “
Subset Simulation and its Application to Seismic Risk Based on Dynamic Analysis
,”
J. Eng. Mech.
,
129
, pp.
901
917
.10.1061/(ASCE)0733-9399(2003)129:8(901)
28.
Norouzi
,
M.
, and
Nikolaidis
,
E.
,
2012
, “
Efficient Random Vibration Analysis Using Markov Chain Monte Carlo Simulation
,”
SAE Int. J. Mater. Manuf.
,
5
(
1
), pp.
77
86
.10.4271/2012-01-0067
29.
Beck
,
J. L.
, and
Au
,
S. K.
,
2002
, “
Bayesian Updating of Structural Models and Reliability Using Markov Chain Monte Carlo Simulation
,”
J. Eng. Mech.
,
128
(
4
), pp.
380
391
.10.1061/(ASCE)0733-9399(2002)128:4(380)
30.
Ching
,
J.
,
Beck
,
J. L.
, and
Au
,
S. K.
,
2005
, “
Hybrid Subset Simulation Method for Reliability Estimation of Dynamic Systems Subject to Stochastic Excitation
,”
Struct. Saf.
,
20
(
3
), pp.
199
214
.10.1016/j.probengmech.2004.09.001
31.
Ching
,
J.
,
Beck
,
J. L.
, and
Au
,
S. K.
,
2005
, “
Reliability Estimation for Dynamic Systems Subject to Stochastic Excitation Using Subset Simulation with Splitting
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
1557
1579
.10.1016/j.cma.2004.05.028
32.
Morio
,
J.
,
Pastel
,
R.
, and
Gland
,
F.
,
2010
, “
An Overview of Importance Splitting for Rare Event Simulation
,”
Eur. J. Phys.
,
31
(
5
), pp.
1295
1303
.10.1088/0143-0807/31/5/028
33.
Rao
,
S. S.
,
2011
,
Mechanical Vibrations
, 5th ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
34.
Ho
,
S.
, and
Xie
,
M.
,
1998
, “
The Use of ARIMA Models for Reliability Forecasting and Analysis
,”
Comput. Eng.
,
35
(
1–2
), pp.
213
216
.
35.
Ruppert
,
D.
,
2004
,
Statistics in Finance
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.