The forming method has been widely used for manufacturing screw rotors with helical profile. This paper takes the manufacturing of screws for screw pumps as an example and uses the cubic spline interpolation method to obtain the tooth profile of the screw forming cutter according to the tooth profile at any end section of screws composed of discrete points and based on the principle of gearing mesh. Furthermore, this paper studies the space enveloping and geometric characteristics between the screw and cutter during the manufacturing process, combines the shape of the contact line, which is generated due to the cooperative motion of the machine tool, screw, and cutter, with spatial location parameters, and thus innovatively proposes a design method for the screw forming cutter based on discrete points, namely, the form-position geometric method (FPGM). It can be seen after comparing the proposed method with the principle of gear meshing that the cutter-workpiece enveloping solution model, simplified by the FPGM, can overcome the key technical difficulty, i.e., it is difficult to accurately calculate the cusp of the tooth curve; meanwhile, the proposed method can improve the precision of the cutter tooth profile design. Finally, the feasibility and superiority of FPGM are verified by experiments.

## References

1.
Seshaiah
,
N.
,
Subrata
,
Kr. G.
,
Sahoo
,
R. K.
, and
Sunil
,
Kr. S.
,
2007
, “
Mathematical Modeling of the Working Cycle of Oil Injected Rotary Twin Screw Compressor
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
145
155
.10.1016/j.applthermaleng.2006.05.007
2.
Tone
,
S. H.
, and
Yang
,
D. C. H.
,
2005
, “
Rotor Profiles Synthesis for Lobe Pumps With Given Flow Rate Functions
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
287
294
10.1115/1.1798271.
3.
Stosic
,
N.
,
2006
, “
A Geometric Approach to Calculating Tool Wear in Screw Rotor Machining
,”
Int. J. Mech. Tools Manuf.
,
46
(
15
), pp.
1961
1965
.10.1016/j.ijmachtools.2006.01.012
4.
Wu
,
Y. R.
, and
Fong
,
Z. H.
,
2008
, “
Rotor Profile Design for the Twin-Screw Compressor Based on the Normal-Rack Generation Method
,”
ASME J. Mech. Des.
,
130
(
4
), p.
0426011
10.1115/1.2839003.
5.
Mimmi
,
G.
,
1997
, “
Determination of Tool Profile for the Milling of Three-Screw Pump Rotor
,”
Meccanica
,
32
(
4
), pp.
363
377
.10.1023/A:1004262607041
6.
Stosic
,
N.
,
Smith
,
I. K.
,
Kovacevic
,
A.
, and
Mujic
,
E.
, “
Geometry of Screw Compressor Rotors and Their Tools
,”
J. Zhejiang Univ. Sci. A
,
12
(
4
), pp.
310
326
10.1631/jzus.A1000393.
7.
Stosic
,
N.
,
1998
, “
On Gearing of Helical Screw Compress Rotors
,”
Proc. Inst. Mech. Eng., Part C
,
212
(
7
), pp.
587
594
.10.1243/0954406981521556
8.
Yang
,
S.-C.
, and
Liang
,
T.-L.
,
2007
, “
Modeling and Manufacturing of PP-Type Single Screw Compressor
,”
Trans. Can. Soc. Mech. Eng.
,
31
(
2
), pp.
219
234
https://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=7&SID=V1RVBS4Jl911qvXoVuZ&page=1&doc=1.
9.
Stosic
,
N.
,
2001
, “
Plural Screw Positive Displacement Machines-Having High Pressure Intermeshing Flanks Generated by Cycloidal Parts of One Rack Formation
,” U.S. Patent No. 6296461-B1.
10.
Chiang
,
C. J.
, and
Fong
,
Z. H.
,
2010
, “
Design of Form Milling Cutters With Multiple Inserts for Screw Rotors
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1613
1627
.10.1016/j.mechmachtheory.2010.06.012
11.
Jing
,
W.
, and
Zhang
,
G. H.
,
2010
, “
A Precision Grinding Method for Screw Rotors Using CBN Grinding Wheel
,”
,
48
(
5–8
), pp.
495
503
10.1007/s00170-009-2321-3.
12.
Fang
,
H. S.
, and
Tsay
,
C. B.
,
1996
, “
Effects of the Hob Cutter Regrinding and Setting on ZE-Type Worm Gear Manufacture
,”
Int. J. Mach. Tools Manuf.
,
36
(
10
), pp.
1123
1135
.10.1016/0890-6955(96)00020-X
13.
Litvin
,
F. L.
,
Nava
,
A.
,
Fan
,
Q.
, and
Fuentes
,
A.
,
2002
, “
New Geometry of Face Worm Gear Drives With Conical and Cylindrical Worms: Generation, Simulation of Meshing, and Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
27–28
), pp.
3035
3054
.10.1016/S0045-7825(02)00235-9
14.
Litvin
,
F. L.
,
Ignacio
,
G. P.
,
Kenji
,
Y.
,
Alfonso
,
F.
, and
Kenichi
,
H.
,
2007
, “
Design, Simulation of Meshing, and Contact Stresses for an Improved Worm Gear Drive
,”
Mech. Mach. Theory
,
42
(
8
), pp.
940
959
.10.1016/j.mechmachtheory.2006.08.005
15.
Yann
,
H.
,
Michele
,
G.
, and
Jean
,
P. V.
,
2006
, “
Numerical Simulation and Optimisation of Worm Gear Cutting
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1090
1110
10.1016/j.mechmachtheory.2005.10.016.
16.
Park
,
S. Y.
,
Lee
,
H. K.
,
Yang
,
G. E.
, and
Mun
,
S. D.
,
2010
, “
A Study on the Machining of Compressor Rotors Using Formed Tools
,”
Int. J. Precision Eng. Manuf.
,
11
, pp.
195
200
.10.1007/s12541-010-0022-3
17.
Abdullah
,
R. A.
, and
Abu Shreehah
,
T. A.
,
2010
, “
A New Method for Machining Concave Profile of the Worms' Thread
,”
Res. J. Appl. Sci., Eng. Technol.
,
2
(
6
), pp.
614
621
http://maxwellsci.com/print/rjaset/v2-614-621.pdf.
18.
Wu
,
B. H.
,
Zhang
,
J.
,
Yang
,
J. H.
, and
Zhang
,
D. H.
,
2012
, “
Calculation Method for Edge Shape of Forming Wheel for Screw Rotors Machining
,”
J. Mech. Eng.
,
48
, pp.
192
198
.10.3901/JME.2012.19.192
19.
Litvin
,
F. L.
, and
Feng
,
P. H.
,
1997
, “
Computerized Design, Generation, and Simulation of Meshing of Rotors of Screw Compressor
,”
Mech. Mach. Theory
,
32
(
2
), pp.
137
160
.10.1016/S0094-114X(96)00036-5
20.
Xu
,
J.
,
Feng
,
Q. K.
, and
Wu
,
W. F.
,
2011
, “
Geometrical Design and Investigation of a New Profile of the Three Screw Pump
,”
ASME J. Mech. Des.
,
133
(
9
), p.
0945011
10.1115/1.4004588.
21.
Wu
,
Y. R.
, and
Fong
,
Z. H.
,
2008
, “
Improved Rotor Profiling Based on the Arbitrary Sealing Line for Twin-Screw Compressors
,”
Mech. Mach. Theory
,
43
(
6
), pp.
695
711
.10.1016/j.mechmachtheory.2007.05.008
22.
Deng
,
D. G.
, and
Shu
,
P. C.
,
1982
,
Rotary Compressor
,
China Machine Press
,
Beijing, China
(in Chinese).
23.
Yao
,
N. X.
,
Wang
,
C. H.
, and
Chen
,
Z. J.
,
1988
,
Application of Mathematics in Tool Design
,
China Machine Press
,
Beijing, China
(in Chinese).