Validating dynamic engineering models is critically important in practical applications by assessing the agreement between simulation results and experimental observations. Though significant progresses have been made, the existing metrics lack the capability of managing uncertainty in both simulations and experiments. In addition, it is challenging to validate a dynamic model aggregately over both the time domain and a model input space with data at multiple validation sites. To overcome these difficulties, this paper presents an area-based metric to systemically handle uncertainty and validate computational models for dynamic systems over an input space by simultaneously integrating the information from multiple validation sites. To manage the complexity associated with a high-dimensional data space, eigenanalysis is performed for the time series data from simulations at each validation site to extract the important features. A truncated Karhunen–Loève (KL) expansion is then constructed to represent the responses of dynamic systems, resulting in a set of uncorrelated random coefficients with unit variance. With the development of a hierarchical data-fusion strategy, probability integral transform (PIT) is then employed to pool all the resulting random coefficients from multiple validation sites across the input space into a single aggregated metric. The dynamic model is thus validated by calculating the cumulative area difference of the cumulative density functions. The proposed model validation metric for dynamic systems is illustrated with a mathematical example, a supported beam problem with stochastic loads, and real data from the vehicle occupant-restraint system.
Skip Nav Destination
Article navigation
November 2016
Research-Article
Validating Dynamic Engineering Models Under Uncertainty
Zequn Wang,
Zequn Wang
Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: zequn.wang@northwestern.edu
Northwestern University,
Evanston, IL 60208
e-mail: zequn.wang@northwestern.edu
Search for other works by this author on:
Wei Chen
Wei Chen
Professor
Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: weichen@northwestern.edu
Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: weichen@northwestern.edu
Search for other works by this author on:
Zequn Wang
Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: zequn.wang@northwestern.edu
Northwestern University,
Evanston, IL 60208
e-mail: zequn.wang@northwestern.edu
Yan Fu
Ren-Jye Yang
Saeed Barbat
Wei Chen
Professor
Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: weichen@northwestern.edu
Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: weichen@northwestern.edu
1Corresponding author.
Contributed by the Design Automation Committee of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received February 16, 2016; final manuscript received May 30, 2016; published online September 12, 2016. Assoc. Editor: Zissimos P. Mourelatos.
J. Mech. Des. Nov 2016, 138(11): 111402 (12 pages)
Published Online: September 12, 2016
Article history
Received:
February 16, 2016
Revised:
May 30, 2016
Citation
Wang, Z., Fu, Y., Yang, R., Barbat, S., and Chen, W. (September 12, 2016). "Validating Dynamic Engineering Models Under Uncertainty." ASME. J. Mech. Des. November 2016; 138(11): 111402. https://doi.org/10.1115/1.4034089
Download citation file:
Get Email Alerts
Related Articles
A New Validation Metric for Models With Correlated Responses Using Limited Experimental and Simulation Data
J. Mech. Des (November,2022)
Discrepancy Prediction in Dynamical System Models Under Untested Input Histories
J. Comput. Nonlinear Dynam (February,2019)
Validation of Dynamic Models in the Time-Scale Domain
J. Dyn. Sys., Meas., Control (November,2010)
Model Following Adaptive Sliding Mode Tracking Control Based on a Disturbance Observer for the Mechanical Systems
J. Dyn. Sys., Meas., Control (May,2018)
Related Proceedings Papers
Related Chapters
Introduction and Background
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Updates, Revisions and Corrections to this Book
Supplement to Fluid Mechanics, Water Hammer, Dynamic Stresses, and Piping Design
Uncertainty in Fire Protection Engineering Design
Uncertainty in Fire Standards and What to Do About It