Abstract

Robust optimization of complex uncertain structures usually involves multiple conflicting and competing structural performance indices. Present approaches for achieving the final design of such an optimization problem always involve a decision-making process, which is a demanding task that requires the rich experience and expert skills of designers. To overcome the difficulty, an interval robust equilibrium optimization approach is proposed to find the optimal design of complex uncertain structure based on the robust equilibrium strategy for multiple conflicting and competing structural performance indices. Specifically, a new concept of closeness and crossing coefficient between interval boundaries (CCCIBs) is proposed at first, based on which the tri-dimensional violation vectors of all interval constraints can be calculated and the feasibility of a design vector can be assessed. Then, the robust equilibrium assessment of multiple objective and constraint performance indices is investigated, based on the results of which the feasible design vectors can be directly ranked according to the robust equilibrium strategy for all structural performance indices. Subsequently, the algorithm for the robust equilibrium optimization of complex uncertain structures is developed by integrating the Kriging technique and nested genetic algorithm. The validity, effectiveness, and practicability of the proposed approach are demonstrated by two illustrative examples.

References

1.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K. L.
, and
Mistree
,
F.
,
1996
, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
478
485
. 10.1115/1.2826915
2.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2013
, “
Objective-Oriented Sequential Sampling for Simulation Based Robust Design Considering Multiple Sources of Uncertainty
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051005
. 10.1115/1.4023922
3.
Du
,
X.
,
2014
, “
Time-Dependent Mechanism Reliability Analysis With Envelope Functions and First-Order Approximation
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081010
. 10.1115/1.4027636
4.
Wu
,
J. L.
,
Luo
,
Z.
,
Li
,
H.
, and
Zhang
,
N.
,
2017
, “
Level-Set Topology Optimization for Mechanical Metamaterials Under Hybrid Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
319
, pp.
414
441
. 10.1016/j.cma.2017.03.002
5.
Jiang
,
C.
,
Fang
,
T.
,
Wang
,
Z. X.
,
Wei
,
X. P.
, and
Huang
,
Z. L.
,
2017
, “
A General Solution Framework for Time-Variant Reliability Based Design Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
323
, pp.
330
352
. 10.1016/j.cma.2017.04.029
6.
Sadoughi
,
M. K.
,
Li
,
M.
,
Hu
,
C.
,
MacKenzie
,
C. A.
,
Lee
,
S.
, and
Eshghi
,
A. T.
,
2018
, “
A High-Dimensional Reliability Analysis Method for Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071401
. 10.1115/1.4039589
7.
Torii
,
A. J.
,
Novotny
,
A. A.
, and
Santos
,
R. B.
,
2016
, “
Robust Compliance Topology Optimization Based on the Topological Derivative Concept
,”
Int. J. Numer. Meth. Eng.
,
106
(
11
), pp.
889
903
. 10.1002/nme.5144
8.
Zhang
,
Y. J.
,
Li
,
M.
,
Zhang
,
J.
, and
Li
,
G. S.
,
2016
, “
Robust Optimization With Parameter and Model Uncertainties Using Gaussian Processes
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111405
. 10.1115/1.4034222
9.
Xia
,
B. Z.
,
,
H.
,
Yu
,
D. J.
, and
Jiang
,
C.
,
2015
, “
Reliability-Based Design Optimization of Structural Systems Under Hybrid Probabilistic and Interval Model
,”
Comput. Struct.
,
160
, pp.
126
134
. 10.1016/j.compstruc.2015.08.009
10.
Zhu
,
Z. F.
, and
Du
,
X. P.
,
2016
, “
Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121403
. 10.1115/1.4034219
11.
Lehký
,
D.
,
Slowik
,
O.
, and
Novák
,
D.
,
2018
, “
Reliability-Based Design: Artificial Neural Networks and Double-Loop Reliability-Based Optimization Approaches
,”
Adv. Eng. Software
,
117
, pp.
123
135
. 10.1016/j.advengsoft.2017.06.013
12.
Zhou
,
J. H.
,
Xu
,
M.
, and
Li
,
M.
,
2016
, “
Reliability-Based Design Optimization Concerning Objective Variation Under Mixed Probabilistic and Interval Uncertainties
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114501
. 10.1115/1.4034346
13.
Meselhy
,
K. T.
, and
Wang
,
G. G.
,
2018
, “
Reliability-Based Design Optimization on Qualitative Objective With Limited Information
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121402
. 10.1115/1.4041172
14.
Du
,
X. P.
, and
Chen
,
W.
,
1999
, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
385
394
.
15.
Jansen
,
M.
,
Lombaert
,
G.
, and
Schevenels
,
M.
,
2015
, “
Robust Topology Optimization of Structures With Imperfect Geometry Based on Geometric Nonlinear Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
285
, pp.
452
467
. 10.1016/j.cma.2014.11.028
16.
Xia
,
T. T.
,
Li
,
M.
, and
Zhou
,
J. H.
,
2016
, “
A Sequential Robust Optimization Approach for Multidisciplinary Design Optimization With Uncertainty
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111406
. 10.1115/1.4034113
17.
Yang
,
C. M.
, and
Du
,
X. P.
,
2014
, “
Robust Design for Multivariate Quality Characteristics Using Extreme Value Distribution
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101405
. 10.1115/1.4028016
18.
Du
,
X. P.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
. 10.1115/1.1649968
19.
Tang
,
Z. L.
, and
Périaux
,
J.
,
2012
, “
Uncertainty Based Robust Optimization Method for Drag Minimization Problems in Aerodynamics
,”
Comput. Methods Appl. Mech. Eng.
,
217–220
(
1
), pp.
12
24
. 10.1016/j.cma.2011.12.011
20.
Cheng
,
J.
,
Liu
,
Z. Y.
,
Wu
,
Z. Y.
,
Li
,
X. G.
, and
Tan
,
J. R.
,
2015
, “
Robust Optimization of Structural Dynamic Characteristics Based on Kriging Model and CNSGA
,”
Struct. Multidiscip. O
,
51
(
2
), pp.
423
437
. 10.1007/s00158-014-1140-9
21.
Dalton
,
S. K.
,
Atamturktur
,
S.
,
Farajpour
,
I.
, and
Juang
,
C. H.
,
2013
, “
An Optimization Based Approach for Structural Design Considering Safety, Robustness, and Cost
,”
Eng. Struct.
,
57
, pp.
356
363
. 10.1016/j.engstruct.2013.09.040
22.
Jensen
,
H. A.
,
Vergara
,
C.
,
Papadimitriou
,
C.
, and
Millas
,
E.
,
2013
, “
The Use of Updated Robust Reliability Measures in Stochastic Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
267
, pp.
293
317
. 10.1016/j.cma.2013.08.015
23.
Medina
,
J. C.
, and
Taflanidis
,
A.
,
2015
, “
Probabilistic Measures for Assessing Appropriateness of Robust Design Optimization Solutions
,”
Struct. Multidiscip. O
,
51
(
4
), pp.
813
834
. 10.1007/s00158-014-1160-5
24.
Wang
,
X. D.
,
Hirsch
,
C.
,
Liu
,
Z. Y.
,
Kang
,
S.
, and
Lacor
,
C.
,
2013
, “
Uncertainty Based Robust Aerodynamic Optimization of Rotor Blades
,”
Int. J. Numer. Meth. Eng.
,
94
(
2
), pp.
111
127
. 10.1002/nme.4438
25.
Garcia-Lopez
,
N. P.
,
Sanchez-Silva
,
M.
,
Medaglia
,
A. L.
, and
Chateauneuf
,
A.
,
2013
, “
An Improved Robust Topology Optimization Approach Using Multiobjective Evolutionary Algorithms
,”
Comput. Struct.
,
125
, pp.
1
10
. 10.1016/j.compstruc.2013.04.025
26.
Zhao
,
J. P.
, and
Wang
,
C. J.
,
2014
, “
Robust Topology Optimization Under Loading Uncertainty Based on Linear Elastic Theory and Orthogonal Diagonalization of Symmetric Matrices
,”
Comput. Methods Appl. Mech. Eng.
,
273
, pp.
204
218
. 10.1016/j.cma.2014.01.018
27.
Richardson
,
J. N.
,
Coelho
,
R. F.
, and
Adriaenssens
,
S.
,
2015
, “
Robust Topology Optimization of Truss Structures With Random Loading and Material Properties: A Multiobjective Perspective
,”
Comput. Struct.
,
154
, pp.
41
47
. 10.1016/j.compstruc.2015.03.011
28.
Martínez-Frutos
,
J.
,
Herrero-Pérez
,
D.
,
Kessler
,
M.
, and
Periago
,
F.
,
2016
, “
Robust Shape Optimization of Continuous Structures Via the Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
271
291
. 10.1016/j.cma.2016.03.003
29.
Zhang
,
W. B.
, and
Kang
,
Z.
,
2017
, “
Robust Shape and Topology Optimization Considering Geometric Uncertainties With Stochastic Level Set Perturbation
,”
Int. J. Numer. Meth. Eng.
,
110
(
1
), pp.
31
56
. 10.1002/nme.5344
30.
Jiang
,
C.
,
Ni
,
B. Y.
,
Han
,
X.
, and
Tao
,
Y. R.
,
2014
, “
Non-Probabilistic Convex Model Process: A new Method of Time-Variant Uncertainty Analysis and Its Application to Structural Dynamic Reliability Problems
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
656
676
. 10.1016/j.cma.2013.10.016
31.
Wu
,
J. L.
,
Luo
,
Z.
,
Zhang
,
N.
, and
Zhang
,
Y. Q.
,
2015
, “
A New Interval Uncertain Optimization Method for Structures Using Chebyshev Surrogate Models
,”
Comput. Struct.
,
146
, pp.
185
196
. 10.1016/j.compstruc.2014.09.006
32.
Wang
,
S. B.
, and
Qing
,
X. Y.
,
2016
, “
A Mixed Interval Arithmetic/Affine Arithmetic Approach for Robust Design Optimization With Interval Uncertainty
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041403
. 10.1115/1.4032630
33.
Kernicky
,
T.
,
Whelan
,
M.
,
Rauf
,
U.
, and
Al-Shaer
,
E.
,
2017
, “
Structural Identification Using a Nonlinear Constraint Satisfaction Processor With Interval Arithmetic and Contractor Programming
,”
Comput. Struct.
,
188
, pp.
1
16
. 10.1016/j.compstruc.2017.04.001
34.
Faes
,
M.
,
Cerneels
,
J.
,
Vandepitte
,
D.
, and
Moens
,
D.
,
2017
, “
Identification and Quantification of Multivariate Interval Uncertainty in Finite Element Models
,”
Comput. Methods Appl. Mech. Eng.
,
315
, pp.
896
920
. 10.1016/j.cma.2016.11.023
35.
Zhou
,
J. H.
, and
Li
,
M.
,
2013
, “
Advanced Robust Optimization With Interval Uncertainty Using a Single-Looped Structure and Sequential Quadratic Programming
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021008
. 10.1115/1.4025963
36.
Zhou
,
J. H.
,
Cheng
,
S.
, and
Li
,
M.
,
2012
, “
Sequential Quadratic Programming for Robust Optimization With Interval Uncertainty
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100913
. 10.1115/1.4007392
37.
Cheng
,
S.
,
Zhou
,
J. H.
, and
Li
,
M.
,
2015
, “
A New Hybrid Algorithm for Multi-Objective Robust Optimization With Interval Uncertainty
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021401
. 10.1115/1.4029026
38.
Wu
,
D.
,
Gao
,
W.
,
Gao
,
K.
, and
Tin-Loi
,
F.
,
2017
, “
Robust Safety Assessment of Functionally Graded Structures With Interval Uncertainties
,”
Compos. Struct.
,
180
, pp.
664
685
. 10.1016/j.compstruct.2017.08.011
39.
Guo
,
S. X.
, and
Lu
,
Z. Z.
,
2015
, “
A Non-Probabilistic Robust Reliability Method for Analysis and Design Optimization of Structures With Uncertain-but-Bounded Parameters
,”
Appl. Math. Model.
,
39
(
7
), pp.
1985
2002
. 10.1016/j.apm.2014.10.026
40.
Chen
,
X. Y.
,
Fan
,
J. P.
, and
Bian
,
X. Y.
,
2017
, “
Structural Robust Optimization Design Based on Convex Model
,”
Results Phys.
,
7
, pp.
3068
3077
. 10.1016/j.rinp.2017.08.013
41.
Wu
,
D.
,
Gao
,
W.
,
Tangaramvong
,
S.
, and
Tin-Loi
,
F.
,
2014
, “
Robust Stability Analysis of Structures With Uncertain Parameters Using Mathematical Programming Approach
,”
Int. J. Numer. Meth. Eng.
,
100
(
10
), pp.
720
745
. 10.1002/nme.4758
42.
Wu
,
D.
,
Gao
,
W.
,
Lib
,
G.
,
Tangaramvonga
,
S.
, and
Tin-Loi
,
F.
,
2015
, “
Robust Assessment of Collapse Resistance of Structures Under Uncertain Loads Based on Info-Gap Model
,”
Comput. Methods Appl. Mech. Eng.
,
285
, pp.
208
227
. 10.1016/j.cma.2014.10.038
43.
Hot
,
A.
,
Weisser
,
T.
, and
Cogan
,
S.
,
2017
, “
An Info-Gap Application to Robust Design of a Prestressed Space Structure Under Epistemic Uncertainties
,”
Mech. Syst. Signal Process.
,
91
, pp.
1
9
. 10.1016/j.ymssp.2016.12.019
44.
Kang
,
Z.
, and
Bai
,
S.
,
2013
, “
On Robust Design Optimization of Truss Structures With Bounded Uncertainties
,”
Struct. Multidiscip. O
,
47
(
5
), pp.
699
714
. 10.1007/s00158-012-0868-3
45.
Wu
,
J. L.
,
Gao
,
J.
,
Luo
,
Z.
, and
Brown
,
T.
,
2016
, “
Robust Topology Optimization for Structures Under Interval Uncertainty
,”
Adv. Eng. Software
,
99
, pp.
36
48
. 10.1016/j.advengsoft.2016.05.002
46.
Liu
,
J. T.
, and
Gea
,
H. C.
,
2018
, “
Robust Topology Optimization Under Multiple Independent Unknown-but-Bounded Loads
,”
Comput. Methods Appl. Mech. Eng.
,
329
, pp.
464
479
. 10.1016/j.cma.2017.09.033
47.
Hanks
,
R. W.
,
Weir
,
J. D.
, and
Lunday
,
B. J.
,
2017
, “
Robust Goal Programming Using Different Robustness Echelons via Norm-Based and Ellipsoidal Uncertainty Sets
,”
Eur. J. Oper. Res.
,
262
(
2
), pp.
636
646
. 10.1016/j.ejor.2017.03.072
48.
Cheng
,
J.
,
Liu
,
Z. Y.
,
Tang
,
M. Y.
, and
Tan
,
J. R.
,
2017
, “
Robust Optimization of Uncertain Structures Based on Normalized Violation Degree of Interval Constraint
,”
Comput. Struct.
,
182
, pp.
41
54
. 10.1016/j.compstruc.2016.10.010
49.
Li
,
F. Y.
,
Luo
,
Z.
,
Rong
,
J. H.
, and
Zhang
,
N.
,
2013
, “
Interval Multi-Objective Optimisation of Structures Using Adaptive Kriging Approximations
,”
Comput. Struct.
,
119
, pp.
68
84
. 10.1016/j.compstruc.2012.12.028
You do not currently have access to this content.