Abstract

Implementation of biomimetics in practical innovation strategies still faces various impediments. Multidisciplinary communication is one of the most recognized one. Enabling teammates having various cognitive and conceptual frameworks to properly exchange information is a key lever for optimization. In a previous study, we performed a comparative analysis of biologists’ and engineers’ cognitive and conceptual frameworks in order to support the establishment of a shared framework of reference within biomimetic teams. This theoretical work led us to consider various guidelines, embodied in a tool, LINKAGE, guiding the team along the biomimetic process, and more specifically during analysis and abstraction steps. This article presents a first version of this free access digital tool, LINKAGE 1.2. After the description and positioning of LINKAGE, comparing with other existing tools, a testing phase involving 19 professionals divided into five interdisciplinary teams is presented. The results of this evaluation lead to the validation of some of the tool’s objectives while underlining some lines of improvements. Various perspectives on the tool’s development are also presented.

References

1.
Graeff
,
E.
,
Maranzana
,
N.
, and
Aoussat
,
A.
,
2020
, “
A Shared Framework of Reference, a First Step Towards Engineers’ and Biologists’ Synergic Reasoning in Biomimetic Design Teams
,”
ASME J. Mech. Des.
,
143
(
4
), p.
041402
.
2.
Benyus
,
J. M.
,
1997
,
Biomimicry: Innovation Inspired by Nature
,
Quill
,
New York
.
3.
ISO
,
2015
, “
Biomimetics — Terminology, concepts and methodology
,”
ISO 18458 : 266
.
4.
Keshwani
,
S.
,
Lenau
,
T. A.
,
Ahmed-Kristensen
,
S.
, and
Chakrabarti
,
A.
,
2017
, “
Comparing Novelty of Designs From Biological-Inspiration with Those From Brainstorming
,”
J. Eng. Des.
,
28
(
10–12
), pp.
654
680
.
5.
Ahmed-Kristensen
,
S.
,
Christensen
,
B. T.
, and
Lenau
,
T. A.
,
2014
, “
Naturally Original: Stimulating Creative Design Through Biological Analogies and Random Images
,”
International Design Conference, DESIGN
,
Dubrovnik, Croatia
,
May 19–22
.
6.
Snell-Rood
,
E.
,
2016
, “
Interdisciplinarity: Bring Biologists Into Biomimetics
,”
Nature
,
529
(
7586
), pp.
277
278
.
7.
Graeff
,
E.
,
Maranzana
,
N.
, and
Aoussat
,
A.
,
2019
, “
Biomimetics, Where Are the Biologists?
,”
J. Eng. Des.
,
30
(
8–9
), pp.
289
310
.
8.
Yen
,
J.
,
Helms
,
M. E.
,
Goel
,
A. K.
,
Tovey
,
C.
, and
Weissburg
,
M.
,
2014
, “Adaptive Evolution of Teaching Practices in Biologically Inspired Design,”
Biologically Inspired Design
,
Springer-Verlag
,
London
, pp.
153
199
.
9.
Chirazi
,
J.
,
Wanieck
,
K.
,
Fayemi
,
P.-E.
,
Zollfrank
,
C.
, and
Jacobs
,
S. R.
,
2019
, “
What Do We Learn From Good Practices of Biologically Inspired Design in Innovation?
,”
Appl. Sci.
,
9
(
4
), p.
650
.
10.
McCardle
,
J.
,
Angus
,
R.
, and
Trott
,
J.
,
2019
, “
Transdisciplinary Design Practices in Education: A Complex Search for Innovation in Nature
,”
Proceedings of the 21st International Conference on Engineering and Product Design Education: Towards a New Innovation Landscape (E and PDE 2019)
,
Glasgow, UK
,
Sept. 12–13
.
11.
Wanieck
,
K.
,
Fayemi
,
P.-E.
,
Maranzana
,
N.
,
Zollfrank
,
C.
, and
Jacobs
,
S. R.
,
2017
, “
Biomimetics and Its Tools
,”
Bioinspired, Biomim. Nanobiomaterials
,
6
(
2
), pp.
53
66
.
12.
Jacobs
,
S. R.
,
Nichol
,
E. C.
, and
Helms
,
M. E.
,
2014
, “
‘Where Are We Now and Where Are We Going?’ The BioM Innovation Database
,”
ASME J. Mech. Des.
,
136
(
11
), p.
111101
.
13.
Helms
,
M. E.
,
Vattam
,
S. S.
, and
Goel
,
A. K.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
.
14.
Fayemi
,
P.-E.
,
Wanieck
,
K.
,
Zollfrank
,
C.
,
Maranzana
,
N.
, and
Aoussat
,
A.
,
2017
, “
Biomimetics: Process, Tools and Practice
,”
Bioinspiration Biomim.
,
12
(
1
), p.
11002
.
15.
Nagel
,
J. K. S.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2010
, “
An Engineering-to-Biology Thesaurus For Engineering Design
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Montreal, Canada
,
Aug. 15–18
.
16.
Graeff
,
E.
,
Maranzana
,
N.
, and
Aoussat
,
A.
,
2019
, “
Engineers’ and Biologists’ Roles During Biomimetic Design Processes, Towards a Methodological Symbiosis
,”
International Conference on Engineering Design, ICED
,
Delft, The Netherlands
,
Aug. 5–8
.
17.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM
,
19
(
2
), pp.
113
132
.
18.
Vattam
,
S. S.
,
Wiltgen
,
B.
,
Helms
,
M. E.
,
Goel
,
A. K.
, and
Yen
,
J.
,
2011
, “DANE: Fostering Creativity in and Through Biologically Inspired Design,”
Design Creativity 2010
,
T.
Taura
, and
Y.
Nagai
, eds.,
Springer
,
London
, pp.
115
122
.
19.
Nagel
,
J. K. S.
,
Nagel
,
R. L.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2010
, “
Function-Based, Biologically Inspired Concept Generation
,”
Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM
,
24
(
4
), pp.
521
535
.
20.
Appio
,
F. P.
,
Achiche
,
S.
,
Martini
,
A.
, and
Beaudry
,
C.
,
2017
, “
On Designers’ Use of Biomimicry Tools During the New Product Development Process: An Empirical Investigation
,”
Technol. Anal. Strateg. Manag.
,
29
(
7
), pp.
775
789
.
21.
Nielsen
,
J.
,
1993
,
Usability Engineering
,
Academic Press
,
Boston, MA
.
22.
Gentner
,
D.
,
1983
, “
Structure-Mapping: A Theoretical Framework for Analogy
,”
Cogn. Sci.
,
7
(
2
), pp.
155
170
.
23.
Vincent
,
J. F. V.
,
2017
, “
The Trade-off: A Central Concept for Biomimetics
,”
Bioinspired, Biomim. Nanobiomaterials
,
6
(
2
), pp.
67
76
.
24.
Nagel
,
J. K. S.
,
Nagel
,
R. L.
, and
Stone
,
R. B.
,
2011
, “
Abstracting Biology for Engineering Design
,”
Int. J. Des. Eng.
,
4
(
1
), p.
23
.
25.
Bhasin
,
D.
, and
McAdams
,
D. A.
,
2018
, “
The Characterization of Biological Organization, Abstraction, and Novelty in Biomimetic Design
,”
Designs
,
2
(
4
), p.
54
.
26.
Mak
,
T. W.
, and
Shu
,
L. H.
,
2004
, “
Abstraction of Biological Analogies for Design
,”
CIRP Ann.—Manuf. Technol.
,
53
(
1
), pp.
117
120
.
27.
Falkenhainer
,
B.
,
Forbus
,
K. D.
, and
Gentner
,
D.
,
1989
, “
The Structure-Mapping Engine: Algorithm and Examples
,”
Artif. Intell
,
41
(
1
), pp.
1
63
.
28.
Yen
,
J.
,
Georgia
,
I.
,
Weissburg
,
M. J.
,
Helms
,
M.
, and
Goel
,
A. K.
,
2011
, “Biologically Inspired Design: A Tool for Interdisciplinary Education,”
Biomimetics: Nature-Based Innovation
,
Y.
Bar-Cohen
, ed.,
CRC Press
,
Boca Raton, FL
.
29.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2004
, “
The Situated Function-Behaviour-Structure Framework
,”
Des. Stud.
,
25
(
4
), pp.
373
391
.
30.
Goel
,
A. K.
,
Rugaber
,
S.
, and
Vattam
,
S.
,
2009
, “
Structure, Behavior, and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM.
,
23
(
1
).
31.
Nagel
,
J. K. S.
,
Schmidt
,
L.
, and
Born
,
W.
,
2018
, “
Establishing Analogy Categories for Bio-Inspired Design
,”
Designs
,
2
(
4
), p.
47
.
32.
Vincent
,
J. F. V.
,
Bogatyreva
,
O. A.
,
Bogatyrev
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A. K.
,
2006
, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc. Interface
,
3
(
9
), pp.
471
482
.
You do not currently have access to this content.