Abstract

In recent years, the parameterized level set method (PLSM), which rests on radial basis functions in most early work, has gained growing attention in structural optimization. However, little work has been carried out to investigate the effect of the basis functions in the parameterized level set method. This paper examines the basis functions of the parameterized level set method, including radial basis functions, B-spline functions, and shape functions in the finite element method (FEM) for topology optimization of continuums. The effects of different basis functions in the PLSM are examined by analyzing and comparing the required storage, convergence speed, computational efficiency, and optimization results, with the benchmark minimum compliance problems subject to a volume constraint. The linear basis functions show relatively satisfactory overall performance. Besides, several schemes to boost computational efficiency are proposed. The study on examples with unstructured 2D and 3D meshes can also be considered as a tentative investigation of prospective possible commercial applications of this method.

References

1.
Bendse
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
. 10.1007/BF01650949
2.
Rozvany
,
G. I. N.
,
2000
, “
The SIMP Method in Topology Optimization—Theoretical Background, Advantages and New Applications
,”
The 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Long Beach, CA
,
Sept. 6–8
.
3.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
. 10.1007/s001580050176
4.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Internat. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
. 10.1002/nme.1064
5.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
. 10.1016/0045-7949(93)90035-C
6.
Huang
,
X.
, and
Xie
,
Y. M.
,
2007
, “
Convergent and Mesh-Independent Solutions for the Bi-Directional Evolutionary Structural Optimization Method
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1039
1049
. 10.1016/j.finel.2007.06.006
7.
Sethian
,
J. A.
, and
Wiegmann
,
A.
,
2000
, “
Structural Boundary Design via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
,
163
(
2
), pp.
489
528
. 10.1006/jcph.2000.6581
8.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
. 10.1016/S0045-7825(02)00559-5
9.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
. 10.1016/j.jcp.2003.09.032
10.
Wei
,
P.
,
Ma
,
H.
, and
Wang
,
M. Y.
,
2014
, “
The Stiffness Spreading Method for Layout Optimization of Truss Structures
,”
Struct. Multidiscip. Optim.
,
49
(
4
), pp.
667
682
. 10.1007/s00158-013-1005-7
11.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
. 10.1115/1.4027609
12.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1243
1260
. 10.1007/s00158-015-1372-3
13.
Norato
,
J. A.
,
Bell
,
B. K.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
. 10.1016/j.cma.2015.05.005
14.
de Ruiter
,
M. J.
, and
van Keulen
,
F.
,
2000
, “Topology of Optimization: Approaching the Material Distribution Problem Using a Topological Function Description,”
Computational Techniques for Materials, Composites and Composite Structures
,
B. H. V.
Topping
, ed.,
Civil-Comp Press
,
Edinburgh, UK
, pp.
111
119
.
15.
Lorensen
,
W. E.
, and
Cline
,
H. E.
,
1987
, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
ACM SIGGRAPH Comput. Graph.
,
21
(
4
), pp.
163
169
. 10.1145/37402.37422
16.
Osher
,
S.
, and
Fedkiw
,
R.
,
2003
,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer
,
Berlin
.
17.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
,
Cambridge University Press
,
Cambridge, UK
.
18.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2014
, “
A Velocity Predictor–Corrector Scheme in Level Set-Based Topology Optimization to Improve Computational Efficiency
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091001
. 10.1115/1.4027720
19.
Geiss
,
M. J.
,
Barrera
,
J. L.
,
Boddeti
,
N.
, and
Maute
,
K.
,
2019
, “
A Regularization Scheme for Explicit Level-Set XFEM Topology Optimization,” Front
,”
Mech. Eng.
,
14
(
2
), pp.
153
170
. 10.1007/s11465-019-0533-2
20.
Maute
,
K.
,
Tkachuk
,
A.
,
Wu
,
J.
,
Qi
,
H. J.
,
Ding
,
Z.
, and
Dunn
,
M. L.
,
2015
, “
Level Set Topology Optimization of Printed Active Composites
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111402
. 10.1115/1.4030994
21.
Liu
,
J.
, and
Ma
,
Y.
,
2017
, “
Sustainable Design-Oriented Level Set Topology Optimization
,”
ASME J. Mech. Des.
,
139
(
1
), p.
011403
. 10.1115/1.4035052
22.
Geiss
,
M. J.
,
Boddeti
,
N.
,
Weeger
,
O.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2019
, “
Combined Level-Set-XFEM-Density Topology Optimization of Four-Dimensional Printed Structures Undergoing Large Deformation
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051405
. 10.1115/1.4041945
23.
Allaire
,
G.
,
Gournay
,
F. D.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2005
, “
Structural Optimization Using Topological and Shape Sensitivity via a Level Set Method
,”
Control Cybern.
,
34
(
1
), pp.
59
80
.
24.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
,
2010
, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Methods Appl. Mech. Engrg.
,
199
(
45–48
), pp.
2876
2891
. 10.1016/j.cma.2010.05.013
25.
de Ruiter
,
M. J.
, and
van Keulen
,
F.
,
2004
, “
Topology Optimization Using a Topology Description Function
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
406
416
. 10.1007/s00158-003-0375-7
26.
Belytschko
,
T.
,
Xiao
,
S. P.
, and
Parimi
,
C.
,
2003
, “
Topology Optimization With Implicitly Function and Regularization
,”
Internat. J. Numer. Methods Eng.
,
57
(
8
), pp.
1177
1196
. 10.1002/nme.824
27.
Wei
,
P.
, and
Wang
,
M. Y.
,
2009
, “
Piecewise Constant Level Set Method for Structural Topology Optimization
,”
Internat. J. Numer. Methods Eng.
,
78
(
4
), pp.
379
402
. 10.1002/nme.2478
28.
Wang
,
S.
, and
Wang
,
M. Y.
,
2006
, “
Radial Basis Functions and Level Set Method for Structural Topology Optimization
,”
Internat. J. Numer. Methods Eng.
,
65
(
12
), pp.
2060
2090
. 10.1002/nme.1536
29.
Wang
,
S. Y.
,
Lim
,
K. M.
,
Khoo
,
B. C.
, and
Wang
,
M. Y.
,
2007
, “
An Extended Level Set Method for Shape and Topology Optimization
,”
J. Comput. Phys.
,
221
(
1
), pp.
395
421
. 10.1016/j.jcp.2006.06.029
30.
Wei
,
P.
,
Li
,
Z.
,
Li
,
X.
, and
Wang
,
M. Y.
,
2018
, “
An 88-Line MATLAB Code for the Parameterized Level Set Method Based Topology Optimization Using Radial Basis Functions
,”
Struct. Multidiscip. Optim.
,
58
(
2
), pp.
831
849
. 10.1007/s00158-018-1904-8
31.
Liu
,
Y.
,
Li
,
Z.
,
Wei
,
P.
, and
Wang
,
W.
,
2018
, “
Parameterized Level-Set Based Topology Optimization Method Considering Symmetry and Pattern Repetition Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
340
, pp.
1079
1101
. 10.1016/j.cma.2018.04.034
32.
Wei
,
P.
, and
Paulino
,
G. H.
,
2020
, “
A Parameterized Level Set Method Combined With Polygonal Finite Elements in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
61
(
5
), pp.
1913
1928
. 10.1007/s00158-019-02444-y
33.
Liu
,
H.
,
Tian
,
Y.
,
Zong
,
H. M.
,
Ma
,
Q. P.
,
Wang
,
M. Y.
, and
Zhang
,
L.
, “
Fully Parallel Level Set Method for Large-Scale Structural Topology Optimization
,”
Comput. Struct.
,
221
, pp.
13
27
. 10.1016/j.compstruc.2019.05.010
34.
Wang
,
M. Y.
, and
Wang
,
S.
,
2006
, “Parametric Shape and Topology Optimization With Radial Basis Functions,”
IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, Machines and Materials: Status and Perspectives, Solid Mechanics and its Applications
, Vol.
137
,
M. P.
Bendsoe
,
N.
Olhoff
, and
O.
Sigmund
, eds.,
Springer
,
Dordrecht, Netherlands
, pp.
13
22
.
35.
Wei
,
P.
, and
Wang
,
M. Y.
,
2006
, “
Parametric Structural Shape and Topology Optimization Method With Radial Basis Functions and Level-Set Method
,”
Proceedings of ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Philadelphia, PA
,
Sept. 10–13
.
36.
Wei
,
P.
, and
Wang
,
M. Y.
,
2006
, “
The Augmented Lagrangian Method in Structural Shape and Topology Optimization With RBF Based Level Set Method
,”
The Forth China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems
,
Kunming, China
,
Nov. 6–9
.
37.
Luo
,
Z.
,
Tong
,
L.
,
Wang
,
M. Y.
, and
Wang
,
S.
,
2007
, “
Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method
,”
J. Comput. Phys.
,
227
(
1
), pp.
680
705
. 10.1016/j.jcp.2007.08.011
38.
Luo
,
Z.
,
Wang
,
M. Y.
,
Wang
,
S. Y.
, and
Wei
,
P.
,
2008
, “
A Level Set-Based Parameterization Method for Structural Shape and Topology Optimization
,”
Internat. J. Numer. Methods Eng.
,
76
(
1
), pp.
1
26
. 10.1002/nme.2092
39.
Luo
,
Z.
,
Tong
,
L.
, and
Kang
,
Z.
,
2009
, “
A Level Set Method for Structural Shape and Topology Optimization Using Radial Basis Functions
,”
Comput. Struct.
,
87
(
7–8
), pp.
425
434
. 10.1016/j.compstruc.2009.01.008
40.
Li
,
H.
,
Luo
,
Z.
,
Gao
,
L.
, and
Wu
,
J.
,
2018
, “
An Improved Parametric Level Set Method for Structural Frequency Response Optimization Problems
,”
Adv. Eng. Softw.
,
126
, pp.
75
89
. 10.1016/j.advengsoft.2018.10.001
41.
Jiang
,
L.
, and
Chen
,
S.
,
2017
, “
Parametric Structural Shape & Topology Optimization With a Variational Distance-Regularized Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
321
, pp.
316
336
. 10.1016/j.cma.2017.03.044
42.
Jiang
,
L.
,
Chen
,
S.
, and
Jiao
,
X.
,
2017
, “
Parametric Shape and Topology Optimization: A New Level Set Approach Based on Cardinal Basis Functions
,”
Internat. J. Numer. Methods Eng.
,
114
(
1
), pp.
66
87
. 10.1002/nme.5733
43.
Wang
,
Y.
,
Luo
,
Z.
,
Kang
,
Z.
, and
Zhang
,
N.
,
2015
, “
A Multi-Material Level Set-Based Topology and Shape Optimization Method
,”
Comput. Methods Appl. Mech. Engrg.
,
283
, pp.
1570
1586
. 10.1016/j.cma.2014.11.002
44.
Li
,
H.
,
Luo
,
Z.
,
Xiao
,
M.
,
Gao
,
L.
, and
Gao
,
J.
,
2019
, “
A New Multiscale Topology Optimization Method for Multiphase Composite Structures of Frequency Response With Level Sets
,”
Comput. Methods Appl. Mech. Eng.
,
356
, pp.
116
144
. 10.1016/j.cma.2019.07.020
45.
Deng
,
X.
,
Wang
,
Y.
,
Yan
,
J.
,
Liu
,
T.
, and
Wang
,
S.
,
2016
, “
Topology Optimization of Total Femur Structure: Application of Parameterized Level Set Method Under Geometric Constraints
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011402
. 10.1115/1.4031803
46.
Wang
,
Y.
, and
Kang
,
Z.
,
2018
, “
A Velocity Field Level Set Method for Shape and Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
115
(
11
), pp.
1315
1336
. 10.1002/nme.5845
47.
Wang
,
S.
, and
Wang
,
M. Y.
,
2006
, “
A Moving Superimposed Finite Element Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
65
(
11
), pp.
1892
1922
. 10.1002/nme.1527
48.
Liu
,
Z.
, and
Korvink
,
J. G.
,
2008
, “
Adaptive Moving Mesh Level Set Method for Structure Topology Optimization
,”
Eng. Optim.
,
40
(
6
), pp.
529
558
. 10.1080/03052150801985544
49.
Ha
,
S. H.
, and
Cho
,
S.
,
2008
, “
Level Set Based Topological Shape Optimization of Geometrically Nonlinear Structures Using Unstructured Mesh
,”
Comput. Struct.
,
86
(
13
), pp.
1447
1455
. 10.1016/j.compstruc.2007.05.025
50.
Yamasaki
,
S.
,
Kawamoto
,
A.
,
Nomura
,
T.
, and
Fujita
,
K.
,
2014
, “
A Consistent Grayscale-Free Topology Optimization Method Using the Level-Set Method and Zero-Level Boundary Tracking Mesh
,”
Int. J. Numer. Methods Eng.
,
101
(
10
), pp.
744
773
. 10.1002/nme.4826
51.
Paulino
,
G. H.
, and
Le
,
C. H.
,
2009
, “
A Modified Q4/Q4 Element for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
255
264
. 10.1007/s00158-008-0228-5
52.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
437
472
. 10.1007/s00158-013-0912-y
53.
van Dijk
,
N. P.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2012
, “
Explicit Level-Set-Based Topology Optimization Using an Exact Heaviside Function and Consistent Sensitivity Analysis
,”
Inte. J. Numer. Methods Eng.
,
91
(
1
), pp.
67
97
. 10.1002/nme.4258
54.
Liu
,
Z.
,
Korvink
,
J. G.
, and
Huang
,
R.
,
2005
, “
Structure Topology Optimization: Fully Coupled Level Set Method via FEMLAB
,”
Struct. Multidiscip. Optim.
,
29
(
6
), pp.
407
417
. 10.1007/s00158-004-0503-z
55.
Xing
,
X.
,
Wei
,
P.
, and
Wang
,
M. Y.
,
2010
, “
A Finite Element-Based Level Set Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
82
(
7
), pp.
805
842
. 10.1002/nme.2785
56.
Wang
,
M. Y.
,
Zong
,
H. M.
,
Ma
,
Q. P.
,
Tian
,
Y.
, and
Zhou
,
M. D.
,
2019
, “
Cellular Level Set in B-Splines (CLIBS): A Method for Modeling and Topology Optimization of Cellular Structures
,”
Comput. Methods Appl. Mech. Eng.
,
349
, pp.
378
404
. 10.1016/j.cma.2019.02.026
57.
Wei
,
P.
,
2007
, “
Level Set Methods for Shape and Topology Optimization of Structures
,”
Ph.D. thesis
,
The Chinese University of Hong Kong
,
Hong Kong
.
58.
Wang
,
M. Y.
, and
Wei
,
P.
,
2005
, “
Topology Optimization with Level Set Method Incorporating Topological Derivative
,”
Proceedings of 6th World Congress of Structural and Multidisciplinary Optimization (WCSMO6)
,
Rio de Janeiro, Brazil
,
May 30–June 3
.
59.
Gordon
,
W. J.
, and
Riesenfeld
,
R. F.
,
1974
, “
B-spline Curves and Surfaces
,”
Comput. Aided Geom. Des.
,
4
, pp.
95
126
. 10.1016/B978-0-12-079050-0.50011-4
60.
Lopes
,
C. G.
,
Santos
,
R. B.
, and
Novotny
,
A. A.
,
2015
, “
Topological Derivative-Based Topology Optimization of Structures Subject to Multiple Load-Cases
,”
Lat. Am. J. Solids Struct.
,
12
(
5
), pp.
834
860
. 10.1590/1679-78251252
61.
Talischi
,
C.
,
Paulino
,
G. H.
,
Pereira
,
A.
, and
Menezes
,
I. F. M.
,
2012a
, “
PolyMesher: A General-Purpose Mesh Generator for Polygonal Elements Written in Matlab
,”
Struct. Multidiscip. Optim.
,
45
(
3
), pp.
309
328
. 10.1007/s00158-011-0706-z
62.
Talischi
,
C.
,
Paulino
,
G. H.
,
Pereira
,
A.
, and
Menezes
,
I. F. M.
,
2012b
, “
Polytop: A Matlab Implementation of a General Topology Optimization Framework Using Unstructured Polygonal Finite Element Meshes
,”
Struct. Multidiscip. Optim.
,
45
(
3
), pp.
329
357
. 10.1007/s00158-011-0696-x
63.
Wei
,
P.
,
Liu
,
Y.
, and
Li
,
Z.
,
2020
, “
A Multi-Discretization Scheme for Topology Optimization Based on Parameterized Level Set Method
,”
Int. J. Simul. Multidisci. Des. Optim.
,
11
(
3
), pp.
1
10
. 10.1051/smdo/2019019
64.
Da
,
D.
,
Xia
,
L.
,
Li
,
G.
, and
Huang
,
X.
,
2018
, “
Evolutionary Topology Optimization of Continuum Structures With Smooth Boundary Representation
,”
Struct. Multidiscip. Optim.
,
57
(
6
), pp.
2143
2159
. 10.1007/s00158-017-1846-6
You do not currently have access to this content.