Abstract

Including resilience in an overall systems optimization process is challenging because the space of hazard-mitigating features is complex, involving both inherent and active prevention and recovery measures. Many resilience optimization approaches have thus been put forward to optimize a system’s resilience while systematically managing these complexities. However, there has been little study about when to apply or how to adapt architectures (or their underlying decomposition strategies) to new problems, which may be formulated differently. To resolve this problem, this article first reviews the literature to understand how choice of optimization architecture flows out of problem type and, based on this review, creates a conceptual framework for understanding these architectures in terms of their underlying decomposition strategies. To then better understand the applicability of alternating and bilevel decomposition strategies for resilience optimization, their performance is compared over two demonstration problems. These comparisons show that while both strategies can solve resilience optimization problem effectively, the alternating strategy is prone to adverse coupling relationships between design and resilience models, while the bilevel strategy is prone to increased computational costs from the use of gradient-based methods in the upper level. Thus, when considering how to solve a novel resilience optimization problem, the choice of decomposition strategy should flow out of problem coupling and efficiency characteristics.

References

1.
Linkov
,
I.
, and
Palma-Oliveira
,
J. M.
,
2017
,
Resilience and Risk: Methods and Application in Environment, Cyber and Social Domains
,
Springer
,
Dordrecht, The Netherlands
.
2.
Cottam
,
B.
,
Specking
,
E.
,
Small
,
C.
,
Pohl
,
E.
,
Parnell
,
G. S.
, and
Buchanan
,
R. K.
,
2019
, “
Defining Resilience for Engineered Systems
,”
Eng. Manage. Res.
,
8
(
2
), pp.
11
29
.
3.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Engineering Resilience Quantification and System Design Implications: A Literature Survey
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111408
.
4.
Punzo
,
G.
,
Tewari
,
A.
,
Butans
,
E.
,
Vasile
,
M.
,
Purvis
,
A.
,
Mayfield
,
M.
, and
Varga
,
L.
,
2020
, “
Engineering Resilient Complex Systems: The Necessary Shift Toward Complexity Science
,”
IEEE Syst. J.
,
14
(
3
), pp.
3865
3874
.
5.
Whitehead
,
C. R.
,
2020
, “
Exploring the Use of Human Reliability and Accident Investigation Methods to Influence Design Requirements for Naval Systems
,” Ph.D. thesis,
Naval Postgraduate School
,
Monterey, CA
.
6.
da Silva
,
F. S.
, and
Matelli
,
J. A.
,
2021
, “
Resilience in Cogeneration Systems: Metrics for Evaluation and Influence of Design Aspects
,”
Reliab. Eng. Syst. Saf.
,
212
(
1
), p.
107444
.
7.
Reilly
,
A. C.
, and
Ayyub
,
B. M.
,
2020
, “Designing for Resilient Systems Under Emerging Risks,”
Optimizing Community Infrastructure: Resilience in the Face of Shocks and Stresses
,
R.
Colker
, ed.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
225
238
.
8.
Matelli
,
J. A.
, and
Goebel
,
K.
,
2018
, “
Conceptual Design of Cogeneration Plants Under a Resilient Design Perspective: Resilience Metrics and Case Study
,”
Appl. Energy.
,
215
(
1
), pp.
736
750
.
9.
Hukerikar
,
S.
, and
Engelmann
,
C.
,
2017
, “
Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale
,”
Supercomput. Front. Innov.
,
4
(
3
), pp.
4
42
.
10.
Feng
,
Q.
,
Zhao
,
X.
,
Fan
,
D.
,
Cai
,
B.
,
Liu
,
Y.
, and
Ren
,
Y.
,
2019
, “
Resilience Design Method Based on Meta-Structure: A Case Study of Offshore Wind Farm
,”
Reliab. Eng. Syst. Saf.
,
186
(
1
), pp.
232
244
.
11.
Rosenstatter
,
T.
,
Strandberg
,
K.
,
Jolak
,
R.
,
Scandariato
,
R.
, and
Olovsson
,
T.
,
2020
, “
Remind: A Framework for the Resilient Design of Automotive Systems
,”
2020 IEEE Secure Development (SecDev)
,
Atlanta, GA
,
Sept. 28–30
, pp.
81
95
.
12.
Wade
,
Z.
,
Parnell
,
G. S.
,
Goerger
,
S. R.
,
Pohl
,
E.
, and
Specking
,
E.
,
2019
, “
Designing Engineered Resilient Systems Using Set-Based Design
,”
16th Annual Conference on Systems Engineering Research
,
Charlottesville, VA
,
May 8–9
, Springer, pp.
111
122
.
13.
Hill
,
A. C.
,
Mason
,
D.
,
Potter
,
J. R.
,
Hellmuth
,
M.
,
Ayyub
,
B. M.
, and
Baker
,
J. W.
,
2019
, “
Ready for Tomorrow: Seven Strategies for Climate-Resilient Infrastructure
,”
Hoover Institution
.
14.
Specking
,
E.
,
Cottam
,
B.
,
Parnell
,
G.
,
Pohl
,
E.
,
Cilli
,
M.
,
Buchanan
,
R.
,
Wade
,
Z.
, and
Small
,
C.
,
2019
, “
Assessing Engineering Resilience for Systems With Multiple Performance Measures
,”
Risk Anal.
,
39
(
9
), pp.
1899
1912
.
15.
Small
,
C.
,
Parnell
,
G.
,
Pohl
,
E.
,
Goerger
,
S. R.
,
Cottam
,
B.
,
Specking
,
E.
, and
Wade
,
Z.
,
2017
, “
Engineered Resilient Systems With Value Focused Thinking
,”
INCOSE International Symposium, Vol. 27
,
Adelaide, Australia
,
July 15–20
, Wiley Online Library, pp.
1371
1385
.
16.
Margolis
,
J. T.
,
Sullivan
,
K. M.
,
Mason
,
S. J.
, and
Magagnotti
,
M.
,
2018
, “
A Multi-objective Optimization Model for Designing Resilient Supply Chain Networks
,”
Int. J. Prod. Econ.
,
204
(
1
), pp.
174
185
.
17.
Ayyub
,
B. M.
,
2014
, “
Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making
,”
Risk Anal.
,
34
(
2
), pp.
340
355
.
18.
MacKenzie
,
C. A.
, and
Hu
,
C.
,
2019
, “
Decision Making Under Uncertainty for Design of Resilient Engineered Systems
,”
Reliab. Eng. Syst. Saf.
,
192
(
1
), p.
106171
.
19.
Hulse
,
D.
,
Hoyle
,
C.
,
Goebel
,
K.
, and
Tumer
,
I. Y.
,
2019
, “
Quantifying the Resilience-Informed Scenario Cost Sum: A Value-Driven Design Approach for Functional Hazard Assessment
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021403
.
20.
Moslehi
,
S.
, and
Reddy
,
T. A.
,
2018
, “
Sustainability of Integrated Energy Systems: A Performance-Based Resilience Assessment Methodology
,”
Appl. Energy.
,
228
(
1
), pp.
487
498
.
21.
Salomon
,
J.
,
Broggi
,
M.
,
Kruse
,
S.
,
Weber
,
S.
, and
Beer
,
M.
,
2020
, “
Resilience Decision-Making for Complex Systems
,”
ASCE-ASME J. Risk. and Uncert. in Engrg Syst. Part B Mech. Engrg.
,
6
(
2
), p.
020901
.
22.
Kall
,
P.
,
Wallace
,
S. W.
, and
Kall
,
P.
,
1994
,
Stochastic Programming
,
Springer
,
Berlin, Germany
. doi.org/10.1007/978-3-642-88272-2
23.
Dantzig
,
G. B.
,
1955
, “
Linear Programming Under Uncertainty
,”
Manage. Sci.
,
1
(
3–4
), pp.
197
206
.
24.
Beale
,
E. M.
,
1955
, “
On Minimizing a Convex Function Subject to Linear Inequalities
,”
J. R. Stat. Soc.: Ser. B (Methodological)
,
17
(
2
), pp.
173
184
.
25.
Wu
,
J.
, and
Wang
,
P.
,
2020
, “
Risk-Averse Optimization for Resilience Enhancement of Complex Engineering Systems Under Uncertainties
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, Paper No.
DETC2020-22226
.
26.
Faturechi
,
R.
,
Levenberg
,
E.
, and
Miller-Hooks
,
E.
,
2014
, “
Evaluating and Optimizing Resilience of Airport Pavement Networks
,”
Comput. Oper. Res.
,
43
(
1
), pp.
335
348
.
27.
Miller-Hooks
,
E.
,
Zhang
,
X.
, and
Faturechi
,
R.
,
2012
, “
Measuring and Maximizing Resilience of Freight Transportation Networks
,”
Comput. Oper. Res.
,
39
(
7
), pp.
1633
1643
.
28.
Mazidi
,
M.
,
Rezaei
,
N.
,
Ardakani
,
F. J.
,
Mohiti
,
M.
, and
Guerrero
,
J. M.
,
2020
, “
A Hierarchical Energy Management System for Islanded Multi-Microgrid Clusters Considering Frequency Security Constraints
,”
Int. J. Electr. Power Energy Syst.
,
121
(
1
), p.
106134
.
29.
Fang
,
Y.
, and
Zio
,
E.
,
2019
, “
Resilience Management of Infrastructure Systems From a Multistage Decision Making Perspective
,”
29th European Safety and Reliability Conference (ESREL2019)
,
Hannover, Germany
,
Sept. 22–26
.
30.
Youn
,
B. D.
,
Hu
,
C.
, and
Wang
,
P.
,
2011
, “
Resilience-Driven System Design of Complex Engineered Systems
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101011
.
31.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Resilience Allocation for Early Stage Design of Complex Engineered Systems
,”
ASME J. Mech. Des.
,
138
(
9
), p.
091402
.
32.
Mehr
,
A. F.
,
Tumer
,
I.
, and
Barszcz
,
E.
,
2005
, “
Optimal Design of Integrated Systems Health Management (ISHM) for Improving the Safety of NASA's Exploration Missions: A Multidisciplinary Design Approach
,”
Sixth World Congress on Structural and Multidisciplinary Optimization
,
Rio de Jeneiro, Brazil
,
May 30–June 3
.
33.
Yu
,
B. Y.
,
Honda
,
T.
,
Zubair
,
S.
,
Sharqawy
,
M. H.
, and
Yang
,
M. C.
,
2013
, “
A Framework for System Design Optimization Based on Maintenance Scheduling With Prognostics and Health Management
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 4–7
, Vol. 55881, American Society of Mechanical Engineers, p. V03AT03A035.
34.
Rismiller1
,
S.
,
Cagan
,
J.
, and
McComb
,
C.
,
2020
, “
Stochastic Stackelberg Games for Agent-Driven Robust Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
. Paper No. DETC2020-22153.
35.
Piacenza
,
J. R.
,
Faller
,
K. J.
,
Bozorgirad
,
M. A.
,
Cotilla-Sanchez
,
E.
,
Hoyle
,
C.
, and
Tumer
,
I. Y.
,
2020
, “
Understanding the Impact of Decision Making on Robustness During Complex System Design: More Resilient Power Systems
,”
ASCE-ASME J. Risk. Uncert. Eng. Syst. Part B Mech. Eng.
,
6
(
2
), p.
021001
.
36.
Zhang
,
X.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2020
, “
Bilevel Optimization Model for Resilient Configuration of Logistics Service Centers
,”
IEEE Trans. Reliab.
,
71
(
1
), pp.
469
483
.
37.
Biswas
,
A.
,
Chen
,
Y.
,
Gibson
,
N.
, and
Hoyle
,
C.
,
2020
, “
Bilevel Flexible-Robust Optimization for Energy Allocation Problems
,”
ASCE-ASME J. Risk. Uncert. in Engrg Syst. Part B Mech. Engrg
,
6
(
3
), p.
031002
.
38.
Wang
,
P.
,
Youn
,
B. D.
,
Hu
,
C.
,
Ha
,
J. M.
, and
Jeon
,
B.
,
2015
, “
A Probabilistic Detectability-Based Sensor Network Design Method for System Health Monitoring and Prognostics
,”
J. Intell. Mater. Syst. Struct.
,
26
(
9
), pp.
1079
1090
.
39.
Malere
,
J. P.
,
2017
, “
Application of Linear Programming to Optimize the Cost-Benefit of an IVHM System
,”
AeroTech Congress & Exhibition
,
Fort Worth, TX
,
Sept. 26–28
.
40.
Hoyle
,
C.
,
Tumer
,
I. Y.
,
Mehr
,
A. F.
, and
Chen
,
W.
,
2009
, “
Health Management Allocation During Conceptual System Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
2
), p.
021002
.
41.
Martins
,
J. R.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA. J.
,
51
(
9
), pp.
2049
2075
.
42.
Tedford
,
N. P.
, and
Martins
,
J. R.
,
2010
, “
Benchmarking Multidisciplinary Design Optimization Algorithms
,”
Optim. Eng.
,
11
(
1
), pp.
159
183
.
43.
Herber
,
D. R.
,
Allison
,
J. T.
,
Buettner
,
R.
,
Abolmoali
,
P.
, and
Patnaik
,
S. S.
,
2020
, “
Architecture Generation and Performance Evaluation of Aircraft Thermal Management Systems Through Graph-Based Techniques
,”
AIAA Scitech Forum
,
Orlando, FL
,
Jan. 6–10
, p.
0159
.
44.
Hulse
,
D.
,
Biswas
,
A.
,
Hoyle
,
C.
,
Tumer
,
I. Y.
,
Kulkarni
,
C.
, and
Goebel
,
K.
,
2021
, “
Exploring Architectures for Integrated Resilience Optimization
,”
J. Aerosp. Inf. Syst.
,
18
(
10
), pp.
665
678
. doi.org/10.2514/1.I010942
45.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2020
, “
A Comparative Study of Formulations and Algorithms for Reliability-Based Co-Design Problems
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031104
.
46.
Bruneau
,
M.
,
Chang
,
S. E.
,
Eguchi
,
R. T.
,
Lee
,
G. C.
,
O’Rourke
,
T. D.
,
Reinhorn
,
A. M.
,
Shinozuka
,
M.
,
Tierney
,
K.
,
Wallace
,
W. A.
, and
Von Winterfeldt
,
D.
,
2003
, “
A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities
,”
Earthquake Spectra
,
19
(
4
), pp.
733
752
.
47.
Henry
,
D.
, and
Ramirez-Marquez
,
J. E.
,
2012
, “
Generic Metrics and Quantitative Approaches for System Resilience as a Function of Time
,”
Reliab. Eng. Syst. Saf.
,
99
(
1
), pp.
114
122
.
48.
Ayyub
,
B. M.
,
2015
, “
Practical Resilience Metrics for Planning, Design, and Decision Making
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng.
,
1
(
3
), p.
04015008
.
49.
Easton
,
E.
,
Beruvides
,
M.
, and
Jackman
,
A.
,
2020
, “The Modulus of Resilience for Critical Subsystems,”
Operations Management-Emerging Trend in the Digital Era
,
A.
Petrillo
,
F.
De Felice
,
G.
Lambert-Torres
,
and E.
Bonaldi
, eds.,
IntechOpen
,
London, UK
.
50.
Petersen
,
L.
,
Lange
,
D.
, and
Theocharidou
,
M.
,
2020
, “
Who Cares What It Means? Practical Reasons for Using the Word Resilience With Critical Infrastructure Operators
,”
Reliab. Eng. Syst. Saf.
,
199
(
1
), p.
106872
.
51.
Thomas
,
J. E.
,
Eisenberg
,
D. A.
, and
Seager
,
T. P.
,
2018
, “
Holistic Infrastructure Resilience Research Requires Multiple Perspectives, Not Just Multiple Disciplines
,”
Infrastructures
,
3
(
3
), p.
30
.
52.
Logan
,
T. M.
,
Aven
,
T.
,
Guikema
,
S.
, and
Flage
,
R.
,
2021
, “
The Role of Time in Risk and Risk Analysis: Implications for Resilience, Sustainability, and Management
,”
Risk Anal.
,
41
(
11
), pp.
1959
1970
.
53.
Sues
,
R.
,
Aminpour
,
M.
, and
Shin
,
Y.
,
2001
, “
Reliability Based MDO for Aerospace Systems
,”
19th AIAA Applied Aerodynamics Conference
,
Anaheim, CA
,
June 11–14
, p.
1521
.
54.
Padmanabhan
,
D.
, and
Batill
,
S.
,
2002
, “
Decomposition Strategies for Reliability Based Optimization in Multidisciplinary System Design
,”
9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Atlanta, GA
,
Sept. 4–6
, p.
5471
.
55.
Liu
,
X.
,
Fang
,
Y.-P.
, and
Zio
,
E.
,
2021
, “
A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures
,”
Reliab. Eng. Syst. Saf.
,
215
(
1
), p.
107868
.
56.
Liao
,
T.-Y.
,
Hu
,
T.-Y.
, and
Ko
,
Y.-N.
,
2018
, “
A Resilience Optimization Model for Transportation Networks Under Disasters
,”
Natural Hazards
,
93
(
1
), pp.
469
489
.
57.
Ren
,
F.
,
Zhao
,
T.
,
Jiao
,
J.
, and
Hu
,
Y.
,
2017
, “
Resilience Optimization for Complex Engineered Systems Based on the Multi-Dimensional Resilience Concept
,”
IEEE Access
,
5
(
1
), pp.
19352
19362
.
58.
Nezamoddini
,
N.
,
Mousavian
,
S.
, and
Erol-Kantarci
,
M.
,
2017
, “
A Risk Optimization Model for Enhanced Power Grid Resilience Against Physical Attacks
,”
Electric Power Syst. Res.
,
143
(
1
), pp.
329
338
.
59.
Chen
,
L.
, and
Miller-Hooks
,
E.
,
2012
, “
Resilience: An Indicator of Recovery Capability in Intermodal Freight Transport
,”
Transp. Sci.
,
46
(
1
), pp.
109
123
.
60.
Dixit
,
V.
,
Seshadrinath
,
N.
, and
Tiwari
,
M.
,
2016
, “
Performance Measures Based Optimization of Supply Chain Network Resilience: A Nsga-ii+ Co-Kriging Approach
,”
Comput. Ind. Eng.
,
93
(
1
), pp.
205
214
.
61.
Gong
,
J.
, and
You
,
F.
,
2018
, “
Resilient Design and Operations of Process Systems: Nonlinear Adaptive Robust Optimization Model and Algorithm for Resilience Analysis and Enhancement
,”
Comput. Chem. Eng.
,
116
(
1
), pp.
231
252
.
62.
Fang
,
Y.-P.
, and
Zio
,
E.
,
2019
, “
An Adaptive Robust Framework for the Optimization of the Resilience of Interdependent Infrastructures Under Natural Hazards
,”
Eur. J. Oper. Res.
,
276
(
3
), pp.
1119
1136
.
63.
Cong
,
H.
,
He
,
Y.
,
Wang
,
X.
, and
Jiang
,
C.
,
2018
, “
Robust Optimization for Improving Resilience of Integrated Energy Systems With Electricity and Natural Gas Infrastructures
,”
J. Modern Power Syst. Clean Energy
,
6
(
5
), pp.
1066
1078
.
64.
Ghorbani-Renani
,
N.
,
González
,
A. D.
,
Barker
,
K.
, and
Morshedlou
,
N.
,
2020
, “
Protection-Interdiction-Restoration: Tri-Level Optimization for Enhancing Interdependent Network Resilience
,”
Reliab. Eng. Syst. Saf.
,
199
(
1
), p.
106907
.
65.
Li
,
Y.
,
Li
,
Z.
,
Wen
,
F.
, and
Shahidehpour
,
M.
,
2018
, “
Minimax-Regret Robust Co-Optimization for Enhancing the Resilience of Integrated Power Distribution and Natural Gas Systems
,”
IEEE Trans. Sustainable Energy
,
11
(
1
), pp.
61
71
.
66.
Babick
,
J. P.
,
2009
, “Tri-Level Optimization of Critical Infrastructure Resilience,”
Naval Postgraduate School Department of Operations Research
,
Monterey, CA
, Technical Report.
67.
Fattahi
,
M.
,
Govindan
,
K.
, and
Maihami
,
R.
,
2020
, “
Stochastic Optimization of Disruption-Driven Supply Chain Network Design With a New Resilience Metric
,”
Int. J. Prod. Econ.
,
230
(
1
), p.
107755
.
68.
Tariverdi
,
M.
,
Fotouhi
,
H.
,
Moryadee
,
S.
, and
Miller-Hooks
,
E.
,
2019
, “
Health Care System Disaster-resilience Optimization Given Its Reliance on Interdependent Critical Lifelines
,”
J. Infrastructure Syst.
,
25
(
1
), p.
04018044
.
69.
Niu
,
G.
, and
Jiang
,
J.
,
2017
, “
Prognostic Control-Enhanced Maintenance Optimization for Multi-Component Systems
,”
Reliab. Eng. Syst. Saf.
,
168
(
1
), pp.
218
226
.
70.
Maul
,
W. A.
,
Kopasakis
,
G.
,
Santi
,
L. M.
,
Sowers
,
T. S.
, and
Chicatelli
,
A.
,
2008
, “
Sensor Selection and Optimization for Health Assessment of Aerospace Systems
,”
J. Aerosp. Comput., Inf., Commun.
,
5
(
1
), pp.
16
34
.
71.
Rodriguez
,
L. P.
,
Cedeno
,
M. V.
, and
Sanchez
,
M. C.
,
2013
, “
Structural Approach to Design Sensor Networks for Fault Diagnosis
,”
Ind. Eng. Chem. Res.
,
52
(
50
), pp.
17941
17952
.
72.
Tasken
,
E.
, and
Puig Cayuela
,
V.
,
2018
, “
Comparison of Two Distributed Fault Diagnosis Approaches Based on Binary Integer Linear Programming (BILP) Optimization
,”
Proceedings of the 29th International Workshop on Principles of Diagnosis, CEUR-WS. org
,
Warsaw, Poland
,
Aug. 27–30
, pp.
1
8
.
73.
Compare
,
M.
,
Bellani
,
L.
, and
Zio
,
E.
,
2019
, “
Optimal Allocation of Prognostics and Health Management Capabilities to Improve the Reliability of a Power Transmission Network
,”
Reliab. Eng. Syst. Saf.
,
184
(
1
), pp.
164
180
.
74.
Xu
,
J.
,
Wang
,
Y.
, and
Xu
,
L.
,
2015
, “
Phm-Oriented Sensor Optimization Selection Based on Multiobjective Model for Aircraft Engines
,”
IEEE Sensors J.
,
15
(
9
), pp.
4836
4844
.
75.
Rostek
,
K.
,
2018
, “
Optimal Sensor Placement Problem for an Electro-Pneumatic Actuator
,”
Proceedings of the 29th International Workshop on Principles of Diagnosis Co-located With 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS 2018)
,
Warsaw, Poland
,
Aug. 27–30
, pp.
1
5
.
76.
Zhang
,
X.
,
Mahadevan
,
S.
,
Sankararaman
,
S.
, and
Goebel
,
K.
,
2018
, “
Resilience-Based Network Design Under Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
169
(
1
), pp.
364
379
.
77.
Zeng
,
X.
,
Liu
,
Z.
, and
Hui
,
Q.
,
2014
, “
Energy Equipartition Stabilization and Cascading Resilience Optimization for Geospatially Distributed Cyber-Physical Network Systems
,”
IEEE. Trans. Syst. Man. Cybernet.: Syst.
,
45
(
1
), pp.
25
43
.
78.
Ip
,
W. H.
, and
Wang
,
D.
,
2011
, “
Resilience and Friability of Transportation Networks: Evaluation, Analysis and Optimization
,”
IEEE Syst. J.
,
5
(
2
), pp.
189
198
.
79.
Li
,
M.
,
Wang
,
H.
, and
Wang
,
H.
,
2019
, “
Resilience Assessment and Optimization for Urban Rail Transit Networks: A Case Study of Beijing Subway Network
,”
IEEE Access
,
7
(
1
), pp.
71221
71234
.
80.
Giahi
,
R.
,
MacKenzie
,
C. A.
, and
Hu
,
C.
,
2020
, “
Design Optimization for Resilience for Risk-Averse Firms
,”
Comput. Ind. Eng.
,
139
(
1
), p.
106122
.
81.
Chandrasekaran
,
S.
, and
Banerjee
,
S.
,
2016
, “
Retrofit Optimization for Resilience Enhancement of Bridges Under Multihazard Scenario
,”
J. Struct. Eng.
,
142
(
8
), p.
C4015012
.
82.
Wang
,
Z.
,
Wang
,
Q.
,
Zukerman
,
M.
,
Guo
,
J.
,
Wang
,
Y.
,
Wang
,
G.
,
Yang
,
J.
, and
Moran
,
B.
,
2017
, “
Multiobjective Path Optimization for Critical Infrastructure Links With Consideration to Seismic Resilience
,”
Comput. Aided Civil Infrastruct. Eng.
,
32
(
10
), pp.
836
855
.
83.
Abdin
,
I.
,
Fang
,
Y.-P.
, and
Zio
,
E.
,
2019
, “
A Modeling and Optimization Framework for Power Systems Design With Operational Flexibility and Resilience Against Extreme Heat Waves and Drought Events
,”
Renewable. Sustainable. Energy. Rev.
,
112
(
1
), pp.
706
719
.
84.
Hulse
,
D.
,
Hoyle
,
C.
,
Tumer
,
I. Y.
, and
Goebel
,
K.
,
2019
, “
Decomposing Incentives for Early Resilient Design: Method and Validation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, Vol. 59193, American Society of Mechanical Engineers, p. V02BT03A015.
85.
Rausch
,
R. T.
,
Goebel
,
K. F.
,
Eklund
,
N. H.
, and
Brunell
,
B. J.
,
2007
, “
Integrated In-Flight Fault Detection and Accommodation: A Model-Based Study
,”
ASME J. Eng. Gas. Turbines. Power.
,
129
(
4
), pp.
962
969
.
86.
Balachandran
,
S.
, and
Atkins
,
E.
,
2017
, “
Markov Decision Process Framework for Flight Safety Assessment and Management
,”
J. Guidance, Control, and Dyn.
,
40
(
4
), pp.
817
830
.
87.
Müller
,
S.
,
Gerndt
,
A.
, and
Noll
,
T.
,
2019
, “
Synthesizing Failure Detection, Isolation, and Recovery Strategies From Nondeterministic Dynamic Fault Trees
,”
J. Aerosp. Inf. Syst.
,
16
(
2
), pp.
52
60
.
88.
Yildiz
,
A.
,
Akcal
,
M. U.
,
Hostas
,
B.
, and
Ure
,
N. K.
,
2019
, “
Switching Control Architecture With Parametric Optimization for Aircraft Upset Recovery
,”
J. Guidance, Control, Dyn.
,
42
(
9
), pp.
2055
2068
.
89.
Zhang
,
D.-m.
,
Du
,
F.
,
Huang
,
H.
,
Zhang
,
F.
,
Ayyub
,
B. M.
, and
Beer
,
M.
,
2018
, “
Resiliency Assessment of Urban Rail Transit Networks: Shanghai Metro as an Example
,”
Safety Science
,
106
(
1
), pp.
230
243
.
90.
Yang
,
Z.
, and
Marti
,
J. R.
,
2021
, “
Real-Time Resilience Optimization Combining an AI Agent with Online Hard Optimization
,”
IEEE Trans. Power Syst.
,
37
(
1
), pp.
508
517
.
91.
Bocchini
,
P.
, and
Frangopol
,
D. M.
,
2012
, “
Optimal Resilience-and Cost-based Postdisaster Intervention Prioritization for Bridges Along a Highway Segment
,”
J. Bridge Eng.
,
17
(
1
), pp.
117
129
.
92.
Nozhati
,
S.
,
2021
, “
A Resilience-Based Framework for Decision Making Based on Simulation-Optimization Approach
,”
Struct. Saf.
,
89
(
1
), p.
102032
.
93.
Zhang
,
X.
,
Mahadevan
,
S.
, and
Goebel
,
K.
,
2019
, “
Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events
,”
Risk Anal.
,
39
(
9
), pp.
2054
2075
.
94.
Zhao
,
T.
, and
Zhang
,
Y.
,
2020
, “
Transportation Infrastructure Restoration Optimization Considering Mobility and Accessibility in Resilience Measures
,”
Transp. Res. Part C: Emerg. Technol.
,
117
(
1
), p.
102700
.
95.
Tapia
,
T.
, and
Negrete-Pincetic
,
M.
,
2021
, “
A Robust Decision-Support Method Based on Optimization and Simulation for Wildfire Resilience in Highly Renewable Power Systems
,”
Eur. J. Oper. Res.
,
294
(
2
), pp.
723
733
.
96.
Lambe
,
A. B.
, and
Martins
,
J. R.
,
2012
, “
Extensions to the Design Structure Matrix for the Description of Multidisciplinary Design, Analysis, and Optimization Processes
,”
Struct. Multidiscipl. Optim.
,
46
(
2
), pp.
273
284
.
97.
Silvas
,
E.
,
Hofman
,
T.
,
Murgovski
,
N.
,
Etman
,
L. P.
, and
Steinbuch
,
M.
,
2016
, “
Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles
,”
IEEE Trans. Vehicular Technol.
,
66
(
1
), pp.
57
70
.
98.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Multidisciplinary Design Optimization: Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA. J.
,
52
(
4
), pp.
691
710
.
99.
Hulse
,
D.
,
Zhang
,
H.
, and
Biswas
,
A.
,
2021
, “
Designengrlab/resil_opt_examples
,” Initial Release (0.1).
Zenodo
.
100.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
,
Peterson
,
P.
,
Weckesser
,
W.
, and
Bright
,
J.
,
2020
, “
Scipy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods.
,
17
(
3
), pp.
261
272
.
You do not currently have access to this content.