Abstract

Design of fluidic actuators remain challenging in specific contexts such as the medical field, when solutions have for instance to be compatible with the stringent requirements of magnetic resonance imaging. In this article, an innovative design of hydraulically actuated revolute joint is introduced. The design originality is linked to the use of multimaterial additive manufacturing for its production. Hydraulic actuation and polymer manufacturing are selected to have compatibility with the medical context. A design taking advantage of the process capabilities is proposed. The proposed component associates a large stroke compliant revolute joint and miniature pistons. An helical rack-and-pinion mechanism is integrated to the compliant joint to control the joint rotation. A specific gear geometry is elaborated to minimize the joint size. It is experimentally characterized in terms of range of motion, stiffness, and available torque to discuss the suitability of the component as a fluidic actuator. The component offers an interesting compactness and range of motion and the process is shown to be adequate for the design of functional systems.

References

1.
Elhawary
,
H.
,
Tse
,
Z. T. H.
,
Hamed
,
A.
,
Rea
,
M.
,
Davies
,
B. L.
, and
Lamperth
,
M. U.
,
2008
, “
The Case for MR-Compatible Robotics: A Review of the State of the Art
,”
Int. J. Med. Rob. Comput. Assist. Surgery
,
4
(
2
), pp.
105
113
.
2.
Comber
,
D. B.
,
Slightam
,
J. E.
,
Gervasi
,
V. R.
,
Neimat
,
J. S.
, and
Barth
,
E. J.
,
2016
, “
Design, Additive Manufacture, and Control of a Pneumatic MR-Compatible Needle Driver
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
138
149
.
3.
Morrow
,
J.
,
Hemleben
,
S.
, and
Menguc
,
Y.
,
2017
, “
Directly Fabricating Soft Robotic Actuators With an Open-Source 3-D Printer
,”
IEEE Rob. Auto. Lett.
,
2
(
1
), pp.
277
281
.
4.
Mehta
,
A.
,
DelPreto
,
J.
, and
Rus
,
D.
,
2015
, “
Integrated Codesign of Printable Robots
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021015
.
5.
Liu
,
T.
,
Wang
,
Y.
, and
Lee
,
K.
,
2018
, “
Three-Dimensional Printable Origami Twisted Tower: Design, Fabrication, and Robot Embodiment
,”
IEEE Rob. Auto. Lett.
,
3
(
1
), pp.
116
123
.
6.
Pfeil
,
A.
,
Barbé
,
L.
,
Wach
,
B.
,
Bruyas
,
A.
,
Geiskopf
,
F.
,
Nierenberger
,
M.
, and
Renaud
,
P.
,
2018
, “
A 3D-Printed Needle Driver Based on Auxetic Structure and Inchworm Kinematics
,”
ASME 2018 International Design Engineering Technical Conferences
,
Quebec City, Canada
,
Aug. 26–29
, p. V05AT07A057.
7.
Bartlett
,
N. W.
,
Tolley
,
M. T.
,
Overvelde
,
J. T. B.
,
Weaver
,
J. C.
,
Mosadegh
,
B.
,
Bertoldi
,
K.
,
Whitesides
,
G. M.
, and
Wood
,
R. J.
,
2015
, “
A 3d-Printed, Functionally Graded Soft Robot Powered by Combustion
,”
Science
,
349
(
6244
), pp.
161
165
.
8.
Bruyas
,
A.
,
Geiskopf
,
F.
, and
Renaud
,
P.
,
2015
, “
Design and Modeling of a Large Amplitude Compliant Revolute Joint: The Helical Shape Compliant Joint
,”
ASME J. Mech. Des.
,
137
(
8
), p.
085003
.
9.
Dong
,
Z.
,
Guo
,
Z.
,
Lee
,
K.
,
Fang
,
G.
,
Tang
,
W. L.
,
Chang
,
H.
,
Chan
,
D. T. M.
, and
Kwok
,
K.
,
2019
, “
High-Performance Continuous Hydraulic Motor for MR Safe Robotic Teleoperation
,”
IEEE Rob. Auto. Lett.
,
4
(
2
), pp.
1964
1971
.
10.
Whitney
,
J. P.
,
Glisson
,
M. F.
,
Brockmeyer
,
E. L.
, and
Hodgins
,
J. K.
,
2014
, “
A Low-Friction Passive Fluid Transmission and Fluid-Tendon Soft Actuator
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
2801
2808
.
11.
Burkhard
,
N.
,
Frishman
,
S.
,
Gruebele
,
A.
,
Whitney
,
J. P.
,
Goldman
,
R.
,
Daniel
,
B.
, and
Cutkosky
,
M.
,
2017
, “
A Rolling-Diaphragm Hydrostatic Transmission for Remote MR-Guided Needle Insertion
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Marina Bay Sands, Singapore
,
May 29—June 3
, pp.
1148
1153
.
12.
Ganesh
,
G.
,
Gassert
,
R.
,
Burdet
,
E.
, and
Bleuler
,
H.
,
2004
, “
Dynamics and Control of an MRI Compatible Master-Slave System With Hydrostatic Transmission
,”
IEEE International Conference on Robotics and Automation, 2004, Proceedings. ICRA ’04
,
New Orleans, LA
,
Apr. 26–May 1
, Vol.
2
,
IEEE
, pp.
1288
1294
.
13.
Pfeil
,
A.
,
Siegfarth
,
M.
,
Geiskopf
,
F.
,
Pusch
,
T.
,
Barbé
,
L.
, and
Renaud
,
P.
,
2019
, “
Hydraulically-Actuated Compliant Revolute Joint for Medical Robotic Systems Based on Multimaterial Additive Manufacturing
,”
IEEE International Conference on Robotics and Automation, 2019, Proceedings
,
Montréal, Canada
,
May 20–24
, Vol.
2
,
IEEE
, pp.
8401
8407
.
14.
Siegfarth
,
M.
,
Pusch
,
T.
,
Pfeil
,
A.
, and
Stallkamp
,
J.
,
2020
, “
Multi-Material 3d Printed Hydraulic Actuator for Medical Robots
,”
Rapid. Prototyp. J.
,
26
(
6
), pp.
1019
1026
.
15.
Morimoto
,
T.
,
Hawkes
,
E.
, and
Okamura
,
A.
,
2017
, “
Design of a Compact Acutation and Control Syste for Flexible Medical Robots
,”
IEEE Rob. Auto. Lett.
,
2
(
3
), pp.
1579
1585
.
16.
Groenhuis
,
V.
,
Siepel
,
F.
,
Veltman
,
J.
, and
Stramigioli
,
S.
,
2017
, “
Design and Characterization of Stormram 4: An MRI-Compatible Robotic System for Breast Biopsy
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, Canada
,
Sept. 24–28
, pp.
928
933
.
17.
Radzevich
,
S. P.
,
2012
,
Dudley’s Handbook of Practical Gear Design and Manufacture
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
18.
Moon
,
Y.
,
Trease
,
B. P.
, and
Kota
,
S.
,
2002
, “
Design of Large-Displacement Compliant Joints
,”
Proceedings of ASME IDETC
,
Montreal, Quebec, Canada
,
Sept. 29–Oct. 2
, pp.
788
798
.
19.
Trease
,
B. P.
,
Moon
,
Y.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.
20.
Bruyas
,
A.
,
Geiskopf
,
F.
, and
Renaud
,
P.
,
2015
, “
Toward Unibody Robotic Structures With Integrated Functions Using Multimaterial Additive Manufacturing: Case Study of an MRI-Compatible Interventional Device
,”
IEEE International Conference on Intelligent Robots and Systems
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
1744
1750
.
You do not currently have access to this content.