Abstract

Wave energy converter (WEC) mechanisms have been increasingly attracting the interest of institutions and companies, because of the energetic crisis and the energy demanded by small off-grid off-shore systems. Examples of WEC systems design date back to 1892 and, since then, different mechanisms have been proposed, based on different working principles. In this work, an attempt has been made to build an atlas of WEC devices, collecting them from the scientific and technical literature, as broadly as possible to the best of the authors’ abilities. The working principle, the wave propagation direction, and the coast proximity have been used to classify the mechanisms of the atlas that have been illustrated by means of standardized esthetics. The topological nature of each device has been also extracted by applying both the polynomial representation of its kinematic chain (KC) together with a planar representation of the corresponding graph. These representations gave rise to a further and more detailed classification of the collected WEC devices that have been gathered together in peculiar topological families. Finally, system power has been also included to complete the information related to the devices illustrated in the atlas.

References

1.
Rusu
,
E.
, and
Onea
,
F.
,
2018
, “
A Review of the Technologies for Wave Energy Extraction
,”
Clean Energy
,
2
(
1
), pp.
10
19
.
2.
Drew
,
B.
,
Plummer
,
A. R.
, and
Sahinkaya
,
M. N.
,
2009
, “
A Review of Wave Energy Converter Technology
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
223
(
8
), pp.
887
902
.
3.
de O. Falcão
,
A. F.
,
2010
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renew. Sustain. Energy Rev.
,
14
(
3
), pp.
899
918
.
4.
Falnes
,
J.
,
2007
, “
A Review of Wave-Energy Extraction
,”
Marine Struct.
,
20
(
4
), pp.
185
201
.
5.
Qiao
,
D.
,
Haider
,
R.
,
Yan
,
J.
,
Ning
,
D.
, and
Li
,
B.
,
2020
, “
Review of Wave Energy Converter and Design of Mooring System
,”
Sustainability
,
12
(
19
), p.
8251
.
6.
Têtu
,
A.
,
2017
,
Power Take-Off Systems for WECs
,
Springer International Publishing
,
Cham
, pp.
203
220
.
7.
Belfiore
,
N. P.
,
1993
, “
An Atlas of Remote Actuated Bevel Gear Wrist Mechanisms of up to Nine Links
,”
Int. J. Robot. Res.
,
12
(
5
), pp.
448
459
.
8.
Belfiore
,
N.
, and
Pennestrí
,
E.
,
1994
, “
Automatic Sketching of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
29
(
1
), pp.
177
193
.
9.
Verotti
,
M.
,
Dochshanov
,
A.
, and
Belfiore
,
N. P.
,
2017
, “
A Comprehensive Survey on Microgrippers Design: Mechanical Structure
,”
ASME J. Mech. Des.
,
139
(
6
), p.
060801
.
10.
Belfiore
,
N.
, and
Pennestrí
,
E.
,
1997
, “
An Atlas Oflinkage-Type Robotic Grippers
,”
Mech. Mach. Theory
,
32
(
7
), pp.
811
833
.
11.
Carballo
,
R.
, and
Iglesias
,
G.
,
2012
, “
A Methodology to Determine the Power Performance of Wave Energy Converters at a Particular Coastal Location
,”
Energy Convers. Manage.
,
61
, pp.
8
18
.
12.
Martinez
,
A.
, and
Iglesias
,
G.
,
2020
, “
Wave Exploitability Index and Wave Resource Classification
,”
Renew. Sustain. Energy Rev.
,
134
, p.
110393
.
13.
Buchsbaum
,
F.
, and
Freudenstein
,
F.
,
1970
, “
Synthesis of Kinematic Structure of Geared Kinematic Chains and Other Mechanisms
,”
J. Mech.
,
5
(
3
), pp.
357
392
.
14.
Freudenstein
,
F.
, and
Maki
,
E. R.
,
1979
, “
The Creation of Mechanisms According to Kinematic Structure and Function
,”
Environ. Plann. B
,
6
(
4
), pp.
375
391
.
15.
Mayourian
,
M.
,
1985
, “The Creation of Mechanisms According to the Separation of Kinematic Structure and Function and Its Partial Automation,” Ph.D. thesis, Columbia University, New York, NY, AAI8604645.
16.
Belfiore
,
N. P.
, and
Tsai
,
L. W.
,
1991
, “
A New Methodology for Structural Synthesis of Gear Robotic Wrists
,”
2nd Nat. Applied Mechanisms and Robotics Conf.
,
Cincinnati, OH
,
Nov. 4–5
,
Paper No. VIB. 5
.
17.
Pennestrì
,
E.
, and
Belfiore
,
N. P.
,
2015
, “
On Crossley’s Contribution to the Development of Graph Based Algorithms for the Analysis of Mechanisms and Gear Trains
,”
Mech. Mach. Theory
,
89
, pp.
92
106
.
18.
Ding
,
H.
,
Cao
,
W.
,
Kecskeméthy
,
A.
, and
Huang
,
Z.
,
2012
, “
Complete Atlas Database of 2-DOF Kinematic Chains and Creative Design of Mechanisms
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031006
.
19.
Dochshanov
,
A.
,
Verotti
,
M.
, and
Belfiore
,
N. P.
,
2017
, “
A Comprehensive Survey on Microgrippers Design: Operational Strategy
,”
ASME J. Mech. Des.
,
139
(
7
), p.
070801
.
20.
Gao
,
M.-F.
, and
Hu
,
J.-B.
,
2018
, “
Kinematic Analysis of Planetary Gear Trains Based on Topology
,”
ASME J. Mech. Des.
,
140
(
1
), p.
012302
.
21.
Rao
,
Y. V. D.
, and
Rao
,
A. C.
,
2008
, “
Generation of Epicyclic Gear Trains of One Degree of Freedom
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052604
.
22.
Yan
,
H.-S.
, and
Kuo
,
C.-H.
,
2006
, “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
384
391
.
23.
Richard
,
M. J.
,
Bindzi
,
I.
, and
Gosselin
,
C. M.
,
1995
, “
A Topological Approach to the Dynamic Simulation of Articulated Machinery
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
199
202
.
24.
Yang
,
W.
,
Ding
,
H.
,
He
,
Y.
, and
Wu
,
M.
,
2017
, “
Studying the Optimal Layout of Topological Graphs to Facilitate the Automatic Sketching of Kinematic Chains
,”
ASME J. Mech. Des.
,
139
(
8
), p.
082301
.
25.
Orbay
,
G.
, and
Kara
,
L. B.
,
2012
, “
Shape Design From Exemplar Sketches Using Graph-Based Sketch Analysis
,”
ASME J. Mech. Des.
,
134
(
11
), p.
111002
.
26.
Wu
,
Z.
,
Campbell
,
M. I.
, and
Fernández
,
B. R.
,
2008
, “
Bond Graph Based Automated Modeling for Computer-Aided Design of Dynamic Systems
,”
ASME J. Mech. Des.
,
130
(
4
), p.
041102
.
27.
Rosenholz
,
A.
,
1892
, “
Wave Power Motor
,” U.S. Patent No. 472398.
28.
Singer
,
J.
, and
Wood
,
J.
,
1894
, “
Wave Motor
,” U.S. Patent No. 524490.
29.
Martin
,
C.
,
1896
, “
Wave Motor
,” U.S. Patent No. 562317.
30.
Norton
,
W.
,
1899
, “
Wave Motor
,” U.S. Patent No. 632139.
31.
Williams
,
H.
,
1902
, “
Wave Motor
,” U.S. Patent No. 706620.
32.
Rich
,
A.
,
1969
, “
Oceanographic Generator
,” U.S. Patent No. 3546473.
33.
Filipenco
,
G.
,
1975
, “
Electrical Stations Operated by Waves
,” U.S. Patent No. 3912938.
34.
Babarit
,
A.
,
Hals
,
J.
,
Muliawan
,
M. J.
,
Kurniawan
,
A.
,
Moan
,
T.
, and
Krokstad
,
J.
,
2012
, “
Numerical Benchmarking Study of a Selection of Wave Energy Converters
,”
Renew. Energy
,
41
, pp.
44
63
.
35.
Costa
,
J. S. D.
,
Beirao
,
P.
, and
Valerio
,
D.
,
2007
, “
Internal Model Control Applied to the Archimedes Wave Swing
,”
International Conference on Control Systems and Computer Science
,
Bucharest, Romania
,
May 24–26
, pp.
1
10
.
36.
Dalton
,
G. J.
,
Alcorn
,
R.
, and
Lewis
,
T.
,
2010
, “
Case Study Feasibility Analysis of the Pelamis Wave Energy Convertor in Ireland, Portugal and North America
,”
Renew. Energy
,
35
(
2
), pp.
443
455
.
37.
Nutt
,
C.
,
1908
, “
Oscillating Motor
,” U.S. Patent No. 908316.
38.
Casella
,
S.
, and
Reynolds
,
P.
,
1909
, “
Wave Motor
,” U.S. Patent No. 917411.
39.
Taylor
,
W.
,
1922
, “
Wave Motor
,” U.S. Patent No. 1471222.
40.
Pasquariello
,
P.
,
1924
, “
Wave and Tide Motor
,” U.S. Patent No. 1528165.
41.
Kriegel
,
B.
,
1967
, “
Power Generating System
,” U.S. Patent No. 3487228.
42.
Curto
,
D.
,
Franzitta
,
V.
, and
Guercio
,
A.
,
2021
, “
Sea Wave Energy. A Review of the Current Technologies and Perspectives
,”
Energies
,
14
(
20
), p.
6604
.
43.
Prasad
,
K. A.
,
Chand
,
A. A.
,
Kumar
,
N. M.
,
Narayan
,
S.
, and
Mamun
,
K. A.
,
2022
, “
A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities Energy Needs
,”
Sustainability
,
14
(
4
), p.
2354
.
44.
Weills
,
R.
,
1955
, “
Buoy Motor
,” U.S. Patent No. 2871790.
45.
Seatricity Orders First Oceanus 2
,” https://www.oedigital.com/news/456675-seatricity-orders-first-oceanus-2, Accessed September 8, 2022.
46.
Orlando
,
V.
,
2014
, “
System for Generating Electrical Energy From Sea Waves
,” EP2764236B1.
47.
Bracco
,
G.
,
Canale
,
M.
, and
Cerone
,
V.
,
2020
, “
Optimizing Energy Production of an Inertial Sea Wave Energy Converter Via Model Predictive Control
,”
Control Eng. Pract.
,
96
(
10
), p.
104299
.
48.
Kanki
,
H.
,
2006
, “
Gyro Wave Activated Power Generator and a Wave Suppressor Using the Power Generator
,” U.S. Patent No. 7003947B2.
49.
Kanki
,
H.
,
Arii
,
S.
,
Furusawa
,
T.
, and
Otoyo
,
T.
,
2009
, “
Development of Advanced Wave Power Generation System by Applying Gyroscopic Moment
,”
8th European Wave and Tidal Energy Conference (EWTEC 2009)
,
Uppsala, Sweden
,
Sept. 7
, pp
280
283
.
50.
Masuda
,
Y.
,
1965
, “
Ocean Wave Electric Generator
,” U.S. Patent No. 3200255.
51.
Masuda
,
Y.
,
1965
, “
Ocean Wave Electric Generator
,” U.S. Patent No. 3204110.
52.
Hinck
,
E.
,
1966
, “
Wave Power Generator
,” U.S. Patent No. 3231749.
53.
Tsubota
,
J.
,
1980
, “
Apparatus for Obtaining Useful Work From Wave Energy
,” U.S. Patent No. 4208875.
54.
Ng
,
T.
,
1981
, “
Apparatus for Producing Electrical Energy From Ocean Waves
,” U.S. Patent No. 4266143.
55.
Caputo
,
C.
,
1994
, “
Energia dal mare
,” Atti Convegno NAV 94,
ATENA
,
Roma
.
56.
Caputo
,
C.
, and
Cavanna
,
G.
,
1996
, “
Energia estraibile dai mari a bassa ondositá
,”
Atti Convegno Minihydro
,
Palinuro, Italy
,
Sept. 7–9
, pp.
173
190
.
57.
Martellucci
,
L.
,
1997
, “
Evaluation of a Sea Wave Energy Converter With Variable Trim
,”
IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203)
,
Honolulu, HI
,
July 27–Aug. 1
, Vol. 3, IEEE, pp.
1990
1995
.
58.
Sachs
,
H. K.
, and
Sachs
,
G. A.
,
1982
, “
Mechanism for Generating Power From Wave Motion on a Body of Water
,” U.S. Patent No. 4352023.
59.
Mundon
,
T.
,
Rosenberg
,
B.
, and
Vining
,
J.
,
2017
, “
A Hybrid Drive Train for Low-Speed, Linear WEC Applications
,”
5th Marine Energy Technology Symposium
,
Washington, DC
,
May 1–3
.
60.
Rosenberg
,
B. J.
,
Mundon
,
T. R.
,
Coe
,
R. G.
,
Quon
,
E. W.
,
Chartrand
,
C. C.
,
Yu
,
Y.
, and
van Rij
,
J. A.
,
2019
, “
Development of WEC Design Loads: A Comparison of Numerical and Experimental Approaches
,” Tech. Rep., Golden, CO.
61.
Coe
,
R. G.
,
Rosenberg
,
B. J.
,
Quon
,
E. W.
,
Chartrand
,
C. C.
,
Yu
,
Y. -H.
,
van Rij
,
J.
, and
Mundon
,
T. R.
,
2019
, “
CFD Design-Load Analysis of a Two-Body Wave Energy Converter
,”
J. Ocean Eng. Marine Energy
,
5
(
2
), pp.
99
117
.
62.
Minguela
,
J. R.
,
2009
, “
Installation and Method for Harnessing Wave Energy
,” U.S. Patent No. 2009/0322080A1.
63.
Ruiz-Minguela
,
J.
,
Marón
,
A.
,
Prieto
,
M.
,
Rodríguez
,
R.
,
Ricci
,
P.
,
Fernandez
,
D.
, and
Taboada
,
M.
,
2008
, “
Design and Testing of the Mooring System for a New Offshore Wave Energy Converter
,”
2nd International Conference on Ocean Energy (ICOE)
,
Brest, France
,
Oct. 15–17
, pp.
1
9
.
64.
Rutta
,
S.
,
2002
, “
Electricity Generating Wave Pipe (Or EGWAP)
,” U.S. Patent No. 6476512B1.
65.
Technology – Ocean Harvesting
,” https://oceanharvesting.com/our-technology/, Accessed September 20, 2022.
66.
News
,
S.
,
2022
, “
Seacap Undergoes Wave Tank Tests
,” https://www.offshore-energy.biz/seacap-undergoes-wave-tank-tests/, Accessed August 25, 2022.
67.
Technology – Centipod
,” https://centipodwave.com/technology/, Accessed September 12, 2022.
68.
McCaskill
,
A.
,
2022
, “
Wave Rider Energy Takes a Mechanical Approach
,” https://www.theswitchreport.com.au/business/wave-rider-energy/, Accessed August 20, 2022.
69.
Neptunewave.ca. https://www.neptunewave.ca/, Accessed September 10, 2022.
70.
Our Wave Power Technology – Seabased
.” https://seabased.com/the-technology, Accessed September 21, 2022.
71.
Albert
,
A.
,
Berselli
,
G.
,
Bruzzone
,
L.
, and
Fanghella
,
P.
,
2017
, “
Mechanical Design and Simulation of an Onshore Four-Bar Wave Energy Converter
,”
Renew. Energy
,
114
(
B
), pp.
766
774
.
72.
Bruzzone
,
L.
,
Fanghella
,
P.
, and
Berselli
,
G.
,
2020
, “
Reinforcement Learning Control of an Onshore Oscillating Arm Wave Energy Converter
,”
Ocean Eng.
,
206
(
Part. B
), p.
107346
.
73.
Bruzzone
,
L.
,
Berselli
,
G.
, and
Fanghella
,
P.
,
2022
, “
Scaled Prototyping of an Onshore Oscillating-Arm Wave Energy Converter
,”
Mech. Mach. Sci.
,
108
(
MMS
), pp.
12
19
.
74.
Tidwell
,
H.
,
1930
, “
Wave Motor
,” U.S. Patent No. 1867780.
75.
Salter
,
S.
,
1975
, “
Apparatus and Method for Extracting Wave Energy
,” U.S. Patent No. 3928967.
76.
Programme
,
D. N. R. E.
, and
Business
,
E.
,
2005
, EB Frond Wave Energy Converter: Phase 2, DTI.
77.
AW-Energy
,”
Waveroller
. https://aw-energy.com/waveroller/.
78.
Tom
,
N. M.
,
Lawson
,
M. J.
,
Yu
,
Y. H.
, and
Wright
,
A. D.
,
2016
, “
Development of a Nearshore Oscillating Surge Wave Energy Converter With Variable Geometry
,”
Renew. Energy
,
96
(
Part A
), pp.
410
424
.
79.
Energy
,
M.
,
2022
, “
Biopower Completes Biowave Construction
.” https://www.offshore-energy.biz/biopower-completes-biowave-construction/. Accessed September 11, 2022.
80.
Majidi
,
A. G.
,
Bingölbali
,
B.
,
Akpınar
,
A.
, and
Rusu
,
E.
,
2021
, “
Wave Power Performance of Wave Energy Converters at High-Energy Areas of a Semi-enclosed Sea
,”
Energy
,
220
, p.
119705
.
81.
Bozzi
,
S.
,
Besio
,
G.
, and
Passoni
,
G.
,
2018
, “
Wave Power Technologies for the Mediterranean Offshore: Scaling and Performance Analysis
,”
Coastal Eng.
,
136
, pp.
130
146
.
82.
Wave Energy
,” http://www.resolutemarine.com/wave-energy/, Accessed September 6, 2022.
83.
Siegel
,
S.
,
2022
, “
Atargis Cycwec
,” https://atargis.com/CycWEC.html, Accessed September 1, 2022.
84.
How It Works – Eco Wave Power
.” https://www.ecowavepower.com/our-technology/how-it-works/, Accessed September 7, 2022.
85.
Gel – Seapower
.” http://www.seapowerscrl.com/ocean-and-river-system/gel, Accessed September 20, 2022.
86.
Mattiazzo
,
G.
,
2019
, “
State of the Art and Perspectives of Wave Energy in the Mediterranean Sea: Backstage of ISWEC
,”
Front. Energy Res.
,
7
, p.
114
.
87.
Thorsheim
,
I.
,
1979
, “
Wave Power Generator
,” U.S. Patent No. 4145882.
88.
Amir
,
M. A. U.
,
Sharip
,
R. M.
,
Muzanni
,
M. A.
, and
Anuar
,
H. A.
,
2016
, “
Wave Energy Convertors (WEC): A Review of the Technology and Power Generation
,”
International Conference on Mathematics, Engineering and Industrial Applications 2016 (ICoMEIA2016)
,
Songkhla, Thailand
,
October
, Vol. 1775, p.
030100
.
89.
Babarit
,
A.
,
Singh
,
J.
,
Mélis
,
C.
,
Wattez
,
A.
, and
Jean
,
P.
,
2017
, “
A Linear Numerical Model for Analysing the Hydroelastic Response of a Flexible Electroactive Wave Energy Converter
,”
J. Fluids Struct.
,
74
, pp.
356
384
.
90.
Algie
,
C.
,
Ryan
,
S.
, and
Fleming
,
A.
,
2017
, “
Predicted Power Performance of a Submerged Membrane Pressure-Differential Wave Energy Converter
,”
Int. J. Marine Energy
,
20
, pp.
125
134
.
91.
Meyerand
,
M.
,
1986
, “
Process and Apparatus for Generating Electrical Power From Ocean Waves
,” U.S. Patent No. 4630440.
92.
Gordon
,
C.
,
1988
, “
Wave Driven Power Generation System
,” U.S. Patent No. 4781023.
93.
Gobato
,
R.
,
Gobato
,
A.
, and
Fedrigo
,
D.
,
2016
, “
Harnessing the Energy of Ocean Surface Waves by Pelamis System
,”
Energy
,
2
(
2
), pp.
1
15
.
94.
Sea Power – Numerical Modelling – 4C Engineering Consultancy – Technology and Innovation in Inverness
,”
Scotland
. https://www.4cengineering.co.uk/case-studies/sea-power-numerical-modelling/, Accessed September 22, 2022.
95.
C-Power – Stingray
.” https://cpower.co/products/#stingray, Accessed September 2, 2022.
96.
Weptos.com. http://www.weptos.com/, Accessed September 15, 2022.
97.
Corbett
,
A.
,
Weinberg
,
E. K.
, and
Goalwin
,
D. S.
,
1962
, “
Power Generator Actuated by Wave Motion
,” U.S. Patent No. 3064137.
98.
Floatinc.com – Rhocee. http://www.floatinc.com/WaveWindRenewable.aspx, Accessed September 7, 2022.
99.
Havkraft Wave Energy Converter (h-wec) – Waves-Energy.Co
,” https://waves-energy.co/2022/03/22/havkraft-wave-energy-converter-h-wec/, Accessed August 30, 2022.
100.
Leancon.com. http://www.leancon.com/, Accessed August 28, 2022.
101.
Wu
,
B.
,
Chen
,
T.
,
Jiang
,
J.
,
Li
,
G.
,
Zhang
,
Y.
, and
Ye
,
Y.
,
2018
, “
Economic Assessment of Wave Power Boat Based on the Performance of ‘Mighty Whale’ and BBDB
,”
Renew. Sustain. Energy Rev.
,
81
(
Part. 1
), pp.
946
953
.
102.
“Mighty Whale – Tethys.” https://tethys.pnnl.gov/project-sites/mighty-whale, Accessed September 15, 2022.
103.
Aderinto
,
T.
, and
Li
,
H.
,
2018
, “
Ocean Wave Energy Converters: Status and Challenges
,”
Energies
,
11
(
5
), p.
1250
.
104.
Folley
,
M.
,
Curran
,
R.
, and
Whittaker
,
T.
,
2006
, “
Comparison of Limpet Contra-Rotating Wells Turbine With Theoretical and Model Test Predictions
,”
Ocean Eng.
,
33
(
8–9
), pp.
1056
1069
.
105.
Cascajo
,
R.
,
García
,
E.
,
Quiles
,
E.
,
Correcher
,
A.
, and
Morant
,
F.
,
2019
, “
Integration of Marine Wave Energy Converters Into Seaports: A Case Study in the Port of Valencia
,”
Energies
,
12
(
5
), p.
787
.
106.
Falcão
,
A. F. O.
, and
Henriques
,
J. C. C.
,
2016
, “
Oscillating-Water-Column Wave Energy Converters and Air Turbines: A Review
,”
Renew. Energy
,
85
, pp.
1391
1424
.
107.
Lacasa
,
M. C.
,
Esteban
,
M. D.
,
López-Gutiérrez
,
J. S.
,
Negro
,
V.
, and
Zang
,
Z.
,
2019
, “
Feasibility Study of the Installation of Wave Energy Converters in Existing Breakwaters in the North of Spain
,”
Appl. Sci.
,
9
(
23
), p.
5225
.
108.
“Yongsoo OWC – Open Energy Information,” https://openei.org/wiki/PRIMRE/Databases/Projects_Database/Devices/Yongsoo_OWC, Accessed September 22, 2022.
109.
“Technology – WSE.” https://www.waveswell.com/technology/, Accessed September 24, 2022.
110.
Babarit
,
A.
,
Wendt
,
F.
,
Yu
,
Y.-H.
, and
Weber
,
J.
,
2017
, “
Investigation on the Energy Absorption Performance of a Fixed-Bottom Pressure-Differential Wave Energy Converter
,”
Appl. Ocean Res.
,
65
, pp.
90
101
.
111.
McNatt
,
J. C.
,
Özkan Haller
,
H. T.
,
Morrow
,
M.
, and
Delos-Reyes
,
M.
,
2014
, “
Preliminary Modeling and Analysis of a Horizontal Pressure Differential Wave Energy Converter
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
1
), p.
011901
.
112.
“Hace – Wave Energy.” https://hacewaveenergy.com/waveenergy, Accessed September 16, 2022.
113.
Wirt
,
L.
,
1979
, “Wave Powered Motor,” U.S. Patent No. 4152895.
114.
“Drakoo Wave Energy Converter – Hann Ocean.” http://www.hann-ocean.com/index.php/products/drakoo.html, Accessed July 17, 2022.
115.
Holmes
,
B.
, and
Barrett
,
S.
,
2009
, “State of The Art Analysis,” HMRC Internal Report for Waveplam. http://www.waveplam.eu/files/downloads/SoA.pdf, Accessed September 5, 2022.
116.
Kofoed
,
J. P.
,
Frigaard
,
P.
,
Friis-Madsen
,
E.
, and
Sørensen
,
H. C.
,
2006
, “
Prototype Testing of the Wave Energy Converter Wave Dragon
,”
Renew. Energy
,
31
(
2
), pp.
181
189
.
117.
118.
Vicinanza
,
D.
,
Margheritini
,
L.
,
Kofoed
,
J. P.
, and
Buccino
,
M.
,
2012
, “
The Ssg Wave Energy Converter: Performance, Status and Recent Developments
,”
Energies
,
5
(
2
), pp.
193
226
.
119.
Rusu
,
L.
, and
Onea
,
F.
,
2017
, “
The Performance of Some State-of-the-Art Wave Energy Converters in Locations With the Worldwide Highest Wave Power
,”
Renew. Sustain. Energy Rev.
,
75
, pp.
1348
1362
.
120.
Chozas
,
J.
,
Kofoed
,
J.
, and
Jensen
,
N.
,
2014
, “User Guide – COE Calculation Tool for Wave Energy Converters,” Ver. 1.6 – April 2014, 1st ed. No. 161 in DCE Technical Reports, Department of Civil Engineering, Aalborg University, Denmark.
121.
Aderinto
,
T.
, and
Li
,
H.
,
2019
, “
Review on Power Performance and Efficiency of Wave Energy Converters
,”
Energies
,
12
(
22
), p.
4329
.
122.
Beyene
,
A.
, and
Wilson
,
J.
,
2006
, “
Comparison of Wave Energy Flux for Northern, Central, and Southern Coast of California Based on Long-Term Statistical Wave Data
,”
Energy
,
31
(
12
), pp.
1856
1869
.
123.
Budar
,
K.
, and
Falnes
,
J.
,
1975
, “
A Resonant Point Absorber of Ocean-Wave Power
,”
Nature
,
256
(
5
), pp.
478
479
.
124.
Newman
,
J.
,
1976
, “
The Interaction of Stationary Vessels With Regular Waves
,”
11th Symposium on Naval Hydrodynamics
,
London, UK
,
Mar. 28–Apr. 2
, pp.
491
501
.
125.
Lavidas
,
G.
,
2020
, “
Selection Index for Wave Energy Deployments (SIWED): A Near-Deterministic Index for Wave Energy Converters
,”
Energy
,
196
, p.
117131
.
126.
Lavidas
,
G.
, and
Blok
,
K.
,
2021
, “
Shifting Wave Energy Perceptions: The Case for Wave Energy Converter (WEC) Feasibility at Milder Resources
,”
Renew. Energy
,
170
, pp.
1143
1155
.
127.
Santo
,
H.
,
Taylor
,
P. H.
,
Moreno
,
E. C.
,
Stansby
,
P.
,
Taylor
,
R. E.
,
Sun
,
L.
, and
Zang
,
J.
,
2017
, “
Extreme Motion and Response Statistics for Survival of the Three-Float Wave Energy Converter M4 in Intermediate Water Depth
,”
J. Fluid Mech.
,
813
, pp.
175
204
.
128.
Evans
,
D. V.
,
1976
, “
A Theory for Wave-Power Absorption by Oscillating Bodies
,”
J. Fluid Mech.
,
77
(
1
), pp.
1
25
.
129.
Renzi
,
E.
, and
Dias
,
F.
,
2012
, “
Resonant Behaviour of an Oscillating Wave Energy Converter in a Channel
,”
J. Fluid Mech.
,
701
(
1
), pp.
482
510
.
130.
Henry
,
A.
,
Folley
,
M.
, and
Whittaker
,
T.
,
2018
, “
A Conceptual Model of the Hydrodynamics of an Oscillating Wave Surge Converter
,”
Renew. Energy
,
118
, pp.
965
972
.
131.
Newman
,
J. N.
,
1979
, “
Absorption of Wave Energy by Elongated Bodies
,”
Appl. Ocean Res.
,
1
(
4
), pp.
189
196
.
132.
Jin
,
S.
,
Zheng
,
S.
, and
Greaves
,
D.
,
2022
, “
On the Scalability of Wave Energy Converters
,”
Ocean Eng.
,
243
(
4
), p.
110212
.
133.
Stansby
,
P.
,
Moreno
,
E. C.
, and
Stallard
,
T.
,
2017
, “
Large Capacity Multi-float Configurations for the Wave Energy Converter M4 Using a Time-Domain Linear Diffraction Model
,”
Appl. Ocean Res.
,
68
, pp.
53
64
.
134.
Martins-Rivas
,
H.
, and
Mei
,
C. C.
,
2009
, “
Wave Power Extraction From an Oscillating Water Column at the Tip of a Breakwater
,”
J. Fluid Mech.
,
626
, pp.
395
414
.
135.
Mavrakos
,
S.
, and
Konispoliatis
,
D.
,
2011
, “
Hydrodynamics of a floating oscillating water column device
,”
International Maritime Association of the Mediterranean (IMAM 2011)
,
Genova, Italy
,
Sept. 13–16
.
You do not currently have access to this content.