Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper presents the development of a robotic ankle exoskeleton for human walking assistance. First, the biomechanical properties of a human ankle joint during walking are presented. Next, design of the robotic ankle exoskeleton is introduced. The exoskeleton is actuated by a novel parallel nonlinear elastic actuator. The cam-spring mechanism in the actuator can function as a parallel nonlinear spring with an adjustable stiffness, and the design of the cam profile curve is described. Additionally, an adaptive controller is proposed for the exoskeleton to generate a desired assistive torque according to the wearer's total weight. Finally, experiments are conducted to validate the effectiveness of the developed robotic ankle exoskeleton. The experimental results demonstrate that during a gait cycle, reductions of 42.7% and 40.1% of the peak and average currents of the driving motor in the actuator are observed, respectively, with the designed cam-spring mechanism. A peak assistive torque of 23.9 Nm can be provided for the wearers by the exoskeleton during walking. With the assistance provided by the exoskeleton, the average and peak soleus activities of the wearers during a gait cycle are decreased by 25.42% and 31.94%, respectively.

References

1.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2002
, “
Biomechanics and Muscle Coordination of Human Walking: Part I: Introduction to Concepts, Power Transfer, Dynamics and Simulations
,”
Gait Posture
,
16
(
4
), pp.
215
232
.
2.
Park
,
K.
,
Hur
,
P.
,
Rosengren
,
K. S.
,
Horn
,
G. P.
, and
Hsiao-Wecksler
,
E. T.
,
2010
, “
Effect of Load Carriage on Gait Due to Firefighting Air Bottle Configuration
,”
Ergonomics
,
53
(
7
), pp.
882
891
.
3.
Beekley
,
M.
,
Jonathan
,
A.
,
Buckley
,
C. M.
,
Michael
,
D.
, and
Crowder
,
T. A.
,
2004
, “
Effects of Heavy Load Carriage During Constant-Speed, Simulated, Road Marching
,”
Mil. Med.
,
172
(
6
), pp.
592
596
.
4.
Wang
,
T. S.
,
Zhao
,
J.
,
Sui
,
D. B.
,
Zhao
,
S. K.
, and
Zhu
,
Y. H.
,
2022
, “
A Rhythmic Motion Control Method Inspired by Board Shoe Racing for a Weight-Bearing Exoskeleton
,”
J. Bionic Eng.
,
19
(
2
), pp.
403
415
.
5.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
158
.
6.
Young
,
A. J.
, and
Ferris
,
D. P.
,
2017
, “
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
2
), pp.
171
182
.
7.
Sawicki
,
G. S.
,
Beck
,
O. N.
,
Kang
,
I.
, and
Young
,
A. J.
,
2020
, “
The Exoskeleton Expansion: Improving Walking and Running Economy
,”
J. NeuroEng. Rehabil.
,
17
(
1
), p.
25
.
8.
Ishmael
,
M. K.
,
Archangeli
,
D.
, and
Lenzi
,
T.
,
2022
, “
A Powered Hip Exoskeleton With High Torque Density for Walking, Running, and Stair Ascent
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
4561
4572
.
9.
Huang
,
T.
,
Zhang
,
S.
,
Yu
,
S.
,
MacLean
,
M. K.
,
Zhu
,
J.
,
Di Lallo
,
A.
,
Jiao
,
C.
,
Bulea
,
T. C.
,
Zheng
,
M.
, and
Su
,
H.
,
2022
, “
Modeling and Stiffness-Based Continuous Torque Control of Lightweight Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking Assistance
,”
IEEE Trans. Rob.
,
38
(
3
), pp.
1442
1459
.
10.
Durandau
,
G.
,
Rampeltshammer
,
W. F.
,
van der Kooij
,
H.
, and
Sartori
,
M.
,
2022
, “
Neuromechanical Model-Based Adaptive Control of Bilateral Ankle Exoskeletons: Biological Joint Torque and Electromyogram Reduction Across Walking Conditions
,”
IEEE Trans. Rob.
,
38
(
3
), pp.
1380
1394
.
11.
Neptune
,
R. R.
,
Sasaki
,
K.
, and
Kautz
,
S. A.
,
2008
, “
The Effect of Walking Speed on Muscle Function and Mechanical Energetics
,”
Gait Posture
,
28
(
1
), pp.
135
143
.
12.
Winter
,
D. A.
,
Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological
,
University of Waterloo Press
,
Waterloo, ON, 1991
.
13.
Jackson
,
R. W.
, and
Collins
,
S. H.
,
2015
, “
An Experimental Comparison of the Relative Benefits of Work and Torque Assistance in Ankle Exoskeletons
,”
J. Appl. Physiol.
,
119
(
5
), pp.
541
557
.
14.
Collins
,
S. H.
,
Wiggin
,
M. B.
, and
Sawicki
,
G. S.
,
2015
, “
Reducing the Energy Cost of Human Walking Using an Unpowered Exoskeleton
,”
Nature
,
522
(
7555
), pp.
212
215
.
15.
Mooney
,
L. M.
, and
Herr
,
H. M.
,
2016
, “
Biomechanical Walking Mechanisms Underlying the Metabolic Reduction Caused by an Autonomous Exoskeleton
,”
J. NeuroEng. Rehabil.
,
13
(
1
), p.
4
.
16.
Malcolm
,
P.
,
Derave
,
W.
,
Galle
,
S.
, and
De Clercq
,
D. C.
,
2013
, “
A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking
,”
PLoS One
,
2
(
2
), p.
e56137
.
17.
Chen
,
B.
,
Zi
,
B.
,
Zeng
,
Y. S.
,
Qin
,
L.
, and
Liao
,
W. H.
,
2018
, “
Ankle-Foot Orthoses for Rehabilitation and Reducing Metabolic Cost of Walking: Possibilities and Challenges
,”
Mechatronics
,
53
, pp.
241
250
.
18.
Orekhov
,
G.
,
Fang
,
Y.
,
Luque
,
J.
, and
Lerner
,
Z. F.
,
2020
, “
Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals With Cerebral Palsy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
2
), pp.
461
467
.
19.
Lerner
,
Z. F.
,
Gasparri
,
G. M.
,
Bair
,
M. O.
,
Lawson
,
J. L.
,
Luque
,
J.
,
Harvey
,
T. A.
, and
Harvey
,
A. T.
,
2018
, “
An Untethered Ankle Exoskeleton Improves Walking Economy in a Pilot Study of Individuals With Cerebral Palsy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
10
), pp.
1985
1993
.
20.
Jategaonkar
,
C.
,
Singh
,
Y.
, and
Vashista
,
V.
,
2022
, “
Effect of External Damping on Ankle Motion During the Swing Phase of Walking
,”
IEEE Robot. Autom. Lett.
,
7
(
3
), pp.
7612
7619
.
21.
Bougrinat
,
Y.
,
Achiche
,
S.
, and
Raison
,
M.
,
2019
, “
Design and Development of a Lightweight Ankle Exoskeleton for Human Walking Augmentation
,”
Mechatronics
,
64
, p.
102297
.
22.
Liu
,
J. Z.
,
Xiong
,
C. H.
, and
Fu
,
C. L.
,
2019
, “
An Ankle Exoskeleton Using a Lightweight Motor to Create High Power Assistance for Push-Off
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041001
.
23.
Jimenez-Fabian
,
R.
,
Geeroms
,
J.
,
Flynn
,
L.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2017
, “
Reduction of the Torque Requirements of an Active Ankle Prosthesis Using a Parallel Spring
,”
Rob. Auton. Syst.
,
92
, pp.
187
196
.
24.
Shao
,
Y. S.
,
Zhang
,
W. X.
,
Su
,
Y. J.
, and
Ding
,
Y. L.
,
2021
, “
Design and Optimisation of Load-Adaptive Actuator With Variable Stiffness for Compact Ankle Exoskeleton
,”
Mech. Mach. Theory
,
161
, p.
104323
.
25.
Gao
,
F.
,
Ma
,
H.
,
Liao
,
W. H.
,
Qin
,
L. Y.
, and
Chen
,
B.
,
2015
, “
Design of Powered Ankle-Foot Prosthesis Driven by Parallel Elastic Actuator
,”
Proceedings of IEEE International Conference on Rehabilitation Robotics
,
Singapore
,
11–14 Aug. 2015
, pp.
374
379
.
26.
Wang
,
S. Q.
,
van Dijk
,
W.
, and
van der Kooij
,
H.
, “
Spring Uses in Exoskeleton Actuation Design
,”
Proceedings of IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
29 Jun.–1 Jul. 2011
, pp.
1
6
.
27.
Penzlin
,
B.
,
Fincan
,
M. E.
,
Li
,
Y. B.
,
Ji
,
L. H.
,
Leonhardt
,
S.
, and
Ngo
,
C.
,
2019
, “
Design and Analysis of a Clutched Parallel Elastic Actuator
,”
Actuators
,
8
(
3
), p.
67
.
28.
Mooney
,
L. M.
,
Rouse
,
E. J.
, and
Herr
,
H. M.
,
2014
, “
Autonomous Exoskeleton Reduces Metabolic Cost of Human Walking During Load Carriage
,”
J. NeuroEng. Rehabil.
,
11
(
1
), p.
80
.
29.
Barnett
,
S. L.
,
Bagley
,
A. T.
, and
Skinner
,
H. B.
,
1993
, “
Ankle Weight Effect on Gait: Orthotic Implications
,”
Orthopedics
,
16
(
10
), pp.
1127
1131
.
30.
Panizzolo
,
F. A.
,
Galiana
,
I.
,
Asbeck
,
A. T.
,
Siviy
,
C.
,
Schmidt
,
K.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2016
, “
A Biologically-Inspired Multi-Joint Soft Exosuit That Can Reduce the Energy Cost of Loaded Walking
,”
J. NeuroEng. Rehabil.
,
13
(
1
), p.
43
.
31.
Mooney
,
L. M.
,
Rouse
,
E. J.
, and
Herr
,
H. M.
,
2014
, “
Autonomous Exoskeleton Reduces Metabolic Cost of Human Walking
,”
J. NeuroEng. Rehabil.
,
11
(
1
), p.
151
.
32.
Pheasant
,
S. T.
,
2007
, “
Review of: Human Walking
,”
Ergonomics
,
24
(
12
), pp.
969
976
.
33.
Matjacic
,
Z.
,
2009
, “
Gait Analysis and Synthesis: Biomechanics, Orthotics, Prosthetics
,”
Technol. Health Care
,
17
(
5–6
), pp.
445
461
.
34.
Shamaei
,
K.
,
Cenciarini
,
M.
, and
Dollar
,
A. M.
, “
On the Mechanics of the Ankle in the Stance Phase of the Gait
,”
Proceedings of IEEE International Conference on Engineering in Medicine and Biology Society
,
Boston, MA
,
30 Aug.–3 Sept. 2011
, pp.
8135
8140
.
35.
Grimmer
,
M.
,
Quinlivan
,
B. T.
,
Lee
,
S.
,
Malcolm
,
P.
,
Rossi
,
D. M.
,
Siviy
,
C.
, and
Walsh
,
C. J.
,
2019
, “
Comparison of the Human-Exosuit Interaction Using Ankle Moment and Ankle Positive Power Inspired Walking Assistance
,”
J. Biomech.
,
83
, pp.
76
84
.
36.
Gasparri
,
G. M.
,
Luque
,
J.
, and
Lerner
,
Z. F.
,
April 2019
, “
Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
4
), pp.
751
759
.
37.
Au
,
S. K.
,
Weber
,
J.
, and
Herr
,
H.
,
2009
, “
Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
51
66
.
38.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis
,”
IEEE/ASME Trans. Mechatron.
,
14
(
6
), pp.
667
676
.
39.
Chang
,
Y. H.
,
Wang
,
W. X.
, and
Fu
,
C. L.
,
2020
, “
A Lower Limb Exoskeleton Recycling Energy From Knee and Ankle Joints to Assist Push-Off
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051011
.
40.
Orekhov
,
G.
, and
Lerner
,
Z. F.
,
2022
, “
Design and Electromechanical Performance Evaluation of a Powered Parallel-Elastic Ankle Exoskeleton
,”
IEEE Robot. Autom. Lett.
,
7
(
3
), pp.
8092
8099
.
You do not currently have access to this content.