Abstract

This article is concerned with the design and control of a 3-Revolute-Revolute-Revolute Parallel Manipulator (3-RRR) rigid-flexible coupling mechanism, to meet the high flexibility and stability requirements for holding control in photovoltaic (PV) panel assembly. A mathematical model is established including forward, inverse, and differential kinematics, which is collapsed into the standard state-space equations. The relationship between the spherical workspace of a 3-RRR rigid-flexible coupling mechanism and the size of its orientation transformations is analyzed. Due to the orientation holding requirements in the PV panel assembly process, a quasi-sliding mode control (QSMC) is designed for orientation adjustment of the 3-RRR mechanism. The effectiveness of the algorithm is verified through simulation and experiment, compared with the traditional PID control. An industrial robot is connected with the 3-RRR rigid-flexible coupling mechanism and programmed to exert continuous disturbance and step signals. The motion capture cameras are adopted to capture the end orientation transformations in real time as feedback. Compared with the traditional PID control method, the mean absolute errors with QSMC are reduced by 64.55% and 65.54% in α and β orientations, respectively. The maximum convergence time in α and β orientations subject to the step signals is accelerated by 52.98% and 54.36%, respectively.

References

1.
Amin
,
A.
,
Wang
,
X.
,
Alroichdi
,
A.
, and
Ibrahim
,
A.
,
2023
, “
Designing and Manufacturing a Robot for Dry-Cleaning PV Solar Panels
,”
Int. J. Energy Res.
,
2023
, pp.
1
15
.
2.
Fan
,
S.
,
Liang
,
W.
,
Wang
,
G.
,
Zhang
,
Y.
, and
Cao
,
S.
,
2022
, “
A Novel Water-Free Cleaning Robot for Dust Removal From Distributed Photovoltaic (PV) in Water-Scarce Areas
,”
Sol. Energy
,
241
, pp.
553
563
.
3.
Li
,
R.
, and
Dai
,
J. S.
,
2009
, “
Crank Conditions and Rotatability of 3-RRR Planar Parallel Mechanisms
,”
Sci. China Ser. E-Technol. Sci.
,
52
(
12
), pp.
3601
3612
.
4.
Huang
,
X.
,
Zhu
,
X.
, and
Gu
,
G.
,
2022
, “
Kinematic Modeling and Characterization of Soft Parallel Robots
,”
IEEE Trans. Robot.
,
38
(
6
), pp.
3792
3806
.
5.
Kumar
,
S.
,
Wöhrle
,
H.
,
de Gea Fernández
,
J.
,
Müller
,
A.
, and
Kirchner
,
F.
,
2020
, “
A Survey on Modularity and Distributivity in Series-Parallel Hybrid Robots
,”
Mechatronics
,
68
, p.
102367
.
6.
Zhao
,
C.
,
Song
,
J.
,
Chen
,
X.
,
Chen
,
Z.
, and
Ding
,
H.
,
2021
, “
Optimum Seeking of Redundant Actuators for M-RCM 3-UPU Parallel Mechanism
,”
Chin. J. Mech. Eng.
,
34
(
1
), p.
121
.
7.
Tian
,
C.
,
Fang
,
Y.
, and
Ge
,
Q. J.
,
2019
, “
Design and Analysis of a Partially Decoupled Generalized Parallel Mechanism for 3T1R Motion
,”
Mech. Mach. Theory
,
140
, pp.
211
232
.
8.
Liu
,
Y.
,
Wu
,
H.
,
Liu
,
H.
,
Chen
,
B.
,
Yao
,
J.
, and
Wang
,
Y.
,
2018
, “
Forward Kinematics for 6-UPS Parallel Robot Using Extra Displacement Sensor
,”
J. Adv. Mech. Des., Syst., Manuf.
,
12
(
7
), p.
JAMDSM0130
JAMDSM0130
.
9.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2012
, “
Constraint Analysis and Bifurcated Motion of the 3PUP Parallel Mechanism
,”
Mech. Mach. Theory
,
49
, pp.
256
269
.
10.
Ye
,
W.
,
Chai
,
X.
, and
Zhang
,
K.
,
2020
, “
Kinematic Modeling and Optimization of a New Reconfigurable Parallel Mechanism
,”
Mech. Mach. Theory
,
149
, p.
103850
.
11.
Jamshidifar
,
H.
,
Khajepour
,
A.
,
Fidan
,
B.
, and
Rushton
,
M.
,
2017
, “
Kinematically-Constrained Redundant Cable-Driven Parallel Robots: Modeling, Redundancy Analysis, and Stiffness Optimization
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
921
930
.
12.
Xiong
,
H.
, and
Diao
,
X.
,
2020
, “
Stiffness Analysis of Cable-Driven Parallel Mechanisms With Cables Having Large Sustainable Strains
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
234
(
10
), pp.
1959
1968
.
13.
Cui
,
X.
,
Chen
,
W.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2017
, “
Design of a 7-DOF Cable-Driven Arm Exoskeleton (CAREX-7) and a Controller for Dexterous Motion Training or Assistance
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
161
172
.
14.
Gouttefarde
,
M.
,
Collard
,
J.-F.
,
Riehl
,
N.
, and
Baradat
,
C.
,
2015
, “
Geometry Selection of a Redundantly Actuated Cable-Suspended Parallel Robot
,”
IEEE Trans. Robot.
,
31
(
2
), pp.
501
510
.
15.
Paty
,
T.
,
Binaud
,
N.
,
Caro
,
S.
, and
Segonds
,
S.
,
2021
, “
Cable-Driven Parallel Robot Modelling Considering Pulley Kinematics and Cable Elasticity
,”
Mech. Mach. Theory
,
159
, p.
104263
.
16.
Shang
,
W.
,
Xie
,
F.
,
Zhang
,
B.
,
Cong
,
S.
, and
Li
,
Z.
,
2020
, “
Adaptive Cross-Coupled Control of Cable-Driven Parallel Robots With Model Uncertainties
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
4110
4117
.
17.
Zhou
,
B.
,
Li
,
S.
,
Zi
,
B.
,
Chen
,
B.
, and
Zhu
,
W.
,
2023
, “
Multi-Objective Optimal Design of a Cable-Driven Parallel Robot Based on an Adaptive Adjustment Inertia Weight Particle Swarm Optimization Algorithm
,”
ASME J. Mech. Des.
,
145
(
8
), p.
083301
.
18.
Babaghasabha
,
R.
,
Khosravi
,
M. A.
, and
Taghirad
,
H. D.
,
2016
, “
Adaptive Robust Control of Fully Constrained Cable Robots: Singular Perturbation Approach
,”
Nonlinear Dyn.
,
85
(
1
), pp.
607
620
.
19.
Tian
,
W.
,
Zhang
,
X.
,
Lv
,
D.
,
Wang
,
L.
, and
Liu
,
Q.
,
2022
, “
Sliding Mode Control Strategy of 3-UPS/S Shipborne Stable Platform With LSTM Neural Network Prediction
,”
Ocean Eng.
,
265
, p.
112497
.
20.
Morinaga
,
A.
,
Ogawa
,
T.
,
Iwanaga
,
K.
,
Shimomoto
,
Y.
, and
Yamamoto
,
I.
,
2021
, “
Development of Motion Reduction Device for Ship Using Underactuated Parallel Link Mechanism
,”
Sens. Mater.
,
33
(
3
), p.
897
.
21.
Yao
,
R.
,
Fu
,
C.
,
Sun
,
C.
, and
Zhu
,
W.
, “
Accuracy Design of the Stewart Manipulator of the Five-Hundred-Meter Aperture Spherical Radio Telescope
,”
Adv. Mech. Eng.
,
11
(
4
), p.
1687814019840840
.
22.
Shikata
,
K.
,
Masuya
,
K.
, and
Sugihara
,
T.
,
2014
, “
3P2-K02 Zero-DOF 3-UU Parallel Mechanism That Inclines Largely in Two Directions (Parallel Robot/Mechanisms and Its Control)
,”
The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec)
,
Toyama, Japan
,
May 25–29
, Vol.
2014
, p.
_3P2-K02_1
.
You do not currently have access to this content.