With the proliferation of successful minimally invasive surgical techniques, comes the challenge of shrinking the size of surgical instruments further to facilitate use in applications such as neurosurgery, pediatric surgery, and needle procedures. This paper introduces laser machined, multi-degree-of-freedom (DOF) hinge joints embedded on tubes, as a possible means to realize such miniature instruments without the need for any assembly. A method to design such a joint for an estimated range of motion was explored. The effects of design and machining parameters on the mechanical interference, range of motion, and joint dislocation were analyzed. The extent of interference between the moving parts of the joint can be used to predict the range of motion of the joint for rigid tubes and future design optimization. The total usable workspace was also estimated using kinematic principles for a joint in series and for two sets of orthogonal joints. Our work can open up avenues to a new class of miniature robotic medical devices with hinge joints and a usable channel for drug delivery.

References

1.
DiMaio
,
S. P.
, and
Salcudean
,
S.
,
2005
, “
Needle Steering and Motion Planning in Soft Tissues
,”
IEEE Trans. Biomed. Eng.
,
52
(
6
), pp.
965
974
.
2.
Webster
,
R. J.
,
Kim
,
J. S.
,
Cowan
,
N. J.
,
Chirikjian
,
G. S.
, and
Okamura
,
A. M.
,
2006
, “
Nonholonomic Modeling of Needle Steering
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
509
525
.
3.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
,
Ramesh
,
K.
, and
Okamura
,
A. M.
,
2010
, “
Mechanics of Flexible Needles Robotically Steered Through Soft Tissue
,”
Int. J. Rob. Res.
,
29
(13), pp. 1640–1660.
4.
Seldinger
,
S. I.
,
1953
, “
Catheter Replacement of the Needle in Percutaneous Arteriography: A New Technique
,”
Acta Radiol.
,
39
(
5
), pp.
368
376
.
5.
Ryu
,
S. C.
,
Quek
,
Z. F.
,
Koh
,
J.-S.
,
Renaud
,
P.
,
Black
,
R. J.
,
Moslehi
,
B.
,
Daniel
,
B. L.
,
Cho
,
K.-J.
, and
Cutkosky
,
M. R.
,
2015
, “
Design of an Optically Controlled MR-Compatible Active Needle
,”
IEEE Trans. Rob.
,
31
(
1
), pp.
1
11
.
6.
York
,
P. A.
,
Swaney
,
P. J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2015
, “
A Wrist for Needle-Sized Surgical Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
1776
1781
.
7.
Adebar
,
T. K.
,
Greer
,
J. D.
,
Laeseke
,
P. F.
,
Hwang
,
G. L.
, and
Okamura
,
A. M.
,
2016
, “
Methods for Improving the Curvature of Steerable Needles in Biological Tissue
,”
IEEE Trans. Biomed. Eng.
,
63
(
6
), pp.
1167
1177
.
8.
Swaney
,
P. J.
,
Burgner
,
J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2013
, “
A Flexure-Based Steerable Needle: High Curvature With Reduced Tissue Damage
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
906
909
.
9.
Shahriari
,
N.
,
Roesthuis
,
R. J.
,
van de Berg
,
N. J.
,
van den Dobbelsteen
,
J. J.
, and
Misra
,
S.
,
2016
, “
Steering an Actuated-Tip Needle in Biological Tissue: Fusing FBG-Sensor Data and Ultrasound Images
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
4443
4449
.
10.
Petruska
,
A. J.
,
Ruetz
,
F.
,
Hong
,
A.
,
Regli
,
L.
,
Sürücü
,
O.
,
Zemmar
,
A.
, and
Nelson
,
B. J.
,
2016
, “
Magnetic Needle Guidance for Neurosurgery: Initial Design and Proof of Concept
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
4392
4397
.
11.
Jelínek
,
F.
,
Arkenbout
,
E. A.
,
Henselmans
,
P. W.
,
Pessers
,
R.
, and
Breedveld
,
P.
,
2015
, “
Classification of Joints Used in Steerable Instruments for Minimally Invasive Surgery—A Review of the State of the Art
,”
ASME J. Med. Devices
,
9
(
1
), p.
010801
.
12.
Parrott
,
D. A.
,
Krupp
,
B. T.
,
Gillum
,
C. L.
,
Matice
,
C. J.
, and
Mingione
,
L. P.
,
2012
, “
Articulating Laparoscopic Surgical Instruments
,” U.S. Patent Application No. 12/916,142.
13.
Blase
,
B.
,
2016
, “
Articulated Section of a Shaft for an Endoscopic Instrument
,” EP Patent No.
2,438,844
.https://www.google.com.na/patents/EP2438844A3?cl=en
14.
Banik
,
M. S.
,
Boulais
,
D. R.
,
Couvillon
,
L. A.
, Jr.,
Chin
,
A. C.
,
Anderson
,
F. J.
,
Macnamara
,
F. T.
,
Fantone
,
S. D.
,
Braunstein
,
D. J.
,
Orband
,
D. G.
,
Saber
,
M.
,
Hunter
,
I. W.
,
Coppola
,
P. A.
,
Kirouac
,
A. P.
,
Clark
,
R. J.
,
Wiesman
,
R. M.
,
Mason
,
T. J.
,
Mehta
,
N. R.
, and
Greaves
,
A. E.
,
2014
, “
Articulation Joint
,” EP Patent No.
2,617,350
.https://data.epo.org/publication-server/pdf-document/EP13164194NWB1.pdf?PN=EP2617350%20EP%202617350&iDocId=7887694&iepatch=.pdf
15.
Shelton
,
F.
, and
Ortiz
,
M.
,
2016
, “
Articulatable Surgical Device With Rotary Driven Cutting Member
,” Ethicon Endo-Surgery, Inc., Cincinnati, OH, U.S. Patent No.
9,492,167
.https://www.google.com.pg/patents/US9492167
16.
Brunnen
,
R. D.
, and
Simon
,
T. J.
,
2010
, “
Bendable Portion of an Insertion Tube of an Endoscope and Method of Producing It
,” Henke-Sass Wolf GmbH, Tuttlingen, Germany, U.S. Patent No.
7,766,821
.https://www.google.com.pg/patents/US7766821
17.
Cooper
,
T.
,
2011
, “
Surgical Instrument With Parallel Motion Mechanism
,” Intuitive Surgical Operations, Inc., Sunnyvale, CA, U.S. Patent No.
7,942,868
.http://www.google.co.in/patents/US7942868
18.
Berlinger
,
N. T.
,
2006
, “
Robotic Surgery-Squeezing Into Tight Places
,”
N. Engl. J. Med.
,
354
(
20
), pp.
2099
2101
.
19.
Bruns
,
N. E.
,
Soldes
,
O. S.
, and
Ponsky
,
T. A.
,
2015
, “
Robotic Surgery May Not ‘Make the Cut’ in Pediatrics
,”
Front. Pediatr.
,
3
, p. 10.
20.
Dolmans
,
D. E.
,
Fukumura
,
D.
, and
Jain
,
R. K.
,
2003
, “
Photodynamic Therapy for Cancer
,”
Nat. Rev. Cancer
,
3
(
5
), pp.
380
387
.
21.
Laroussi
,
M.
,
2014
, “
From Killing Bacteria to Destroying Cancer Cells: 20 Years of Plasma Medicine
,”
Plasma Processes Polym.
,
11
(
12
), pp.
1138
1141
.
22.
Pardal
,
R.
,
Clarke
,
M. F.
, and
Morrison
,
S. J.
,
2003
, “
Applying the Principles of Stem-Cell Biology to Cancer
,”
Nat. Rev. Cancer
,
3
(
12
), pp.
895
902
.
23.
Alapati
,
S. B.
,
Brantley
,
W. A.
,
Svec
,
T. A.
,
Powers
,
J. M.
,
Nusstein
,
J. M.
, and
Daehn
,
G. S.
,
2005
, “
SEM Observations of Nickel-Titanium Rotary Endodontic Instruments That Fractured During Clinical Use
,”
J. Endod.
,
31
(
1
), pp.
40
43
.
24.
Parandoush
,
P.
, and
Hossain
,
A.
,
2014
, “
A Review of Modeling and Simulation of Laser Beam Machining
,”
Int. J. Mach. Tools Manuf.
,
85
, pp.
135
145
.
25.
Pfeifer
,
R.
,
Herzog
,
D.
,
Hustedt
,
M.
, and
Barcikowski
,
S.
,
2010
, “
Pulsed Nd:YAG Laser Cutting of NiTi Shape Memory Alloys-Influence of Process Parameters
,”
J. Mater. Process. Technol.
,
210
(
14
), pp.
1918
1925
.
26.
Wolfram Research, 2016, “
Mathematica Version 11.0
,” Wolfram Research, Inc., Champaign, IL.
You do not currently have access to this content.