Remote center of motion (RCM) mechanisms are often used in surgical robots for laparoscopic surgery. In this paper, a RCM mechanism for holding a robotic forceps that facilitates adjustment using a flexible structure is proposed. The flexible structure is designed and manufactured with polypropylene-like resin material using a three-dimensional (3D) printer. Super elastic NI-Ti rods are inserted in the structure to have elasticity for bending and have rigidity for twisting. The structure achieves pitch motion around the remote center with two pneumatic cylinders. One cylinder drives the position and the other cylinder controls the bending radius of the structure. Therefore, the location of the remote center can be variable. This allows easier adjustment of the remote center before or during operation. The holder robot including the mechanism has four degrees-of-freedom (DOFs) in total, consisting of the pitch, a rotation around yaw axis, a translation in the direction of forceps insertion and a rotation of the forceps. Pneumatic rotary actuators are used for rotations and a cylinder is used for the translational motion. The model of the flexible structure is derived experimentally to design a controller for the pitch motion. A pneumatically driven robotic forceps is mounted on the holder to construct a master–slave control system. Experimental results show that the proposed control law achieves the desired rotational pitch motion. We compare the holder with a rigid link RCM holder and confirm the robustness of the proposed holder for variable remote center. Finally, the effectiveness of the system is confirmed with suturing tasks using a phantom tissue.

References

1.
Taylor
,
R. H.
, and
Stoianovici
,
D.
,
2003
, “
Medical Robotics in Computer-Integrated Surgery
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
765
781
.
2.
Davies
,
B.
,
2000
, “
A Review of Robotics in Surgery
,”
Proc. Inst. Mech. Eng., Part H
,
214
(
1
), pp.
129
140
.
3.
Dario
,
P.
,
Hannaford
,
B.
, and
Menciassi
,
A.
,
2003
, “
Smart Surgical Tools and Augmenting Devices
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
782
792
.
4.
Viteiello
,
V.
,
Lee
,
S.-L.
,
Cundy
,
T.
, and
Yang
,
G.-Z.
,
2013
, “
Emerging Robotic Platforms for Minimally Invasive Surgery
,”
IEEE Rev. Biomed. Eng.
,
6
, pp.
111
126
.
5.
Hunbens
,
G.
,
Coveliers
,
H.
,
Balliu
,
L.
,
Uppert
,
M.
, and
Vaneerdeweg
,
W.
,
2003
, “
A Performance Study Comparing Manual and Robotically Assisted Laparoscopic Surgery Using the Da Vinci System
,”
Surg. Endosc.
,
17
(
10
), pp.
1595
1599
.
6.
Tadano
,
K.
,
Kawashima
,
K.
,
Kojima
,
K.
, and
Tanaka
,
N.
,
2010
, “
Development of a Pneumatic Surgical Manipulator IBIS IV
,”
J. Rob. Mech.
,
22
(
2
), pp.
179
180
.
7.
Tadano
,
K.
, and
Kawashima
,
K.
,
2010
, “
Development of a Master Slave System With Force-Sensing Abilities Using Pneumatic Actuators for Laparoscopic Surgery
,”
Adv. Rob.
,
24
(
12
), pp.
1763
1783
.
8.
Beira
,
R.
,
Santos-Carreras
,
L.
,
Rognini
,
G.
,
Bleuler
,
H.
, and
Clavel
,
R.
,
2011
, “
Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
Appl. Bionics Biomech.
,
8
(
2
), pp.
191
208
.
9.
Eldridge
,
Gruben
,
K.
,
LaRose
,
D.
,
Funda
,
J.
,
Gomory
,
S.
,
Karidis
,
J.
,
McVicker
,
G.
,
Taylor
,
R.
, and
Anderson
,
J.
,
1996
, “
A Remote Center of Motion Robotic Arm for Computer Assisted Surgery
,”
Robotica
,
14
(
1
), pp.
103
109
.
10.
Kuo
,
C.-H.
, and
Dai
,
J. S.
,
2012
, “
Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
J. Med. Dev.
,
6
(
2
), p.
021008
.
11.
Li
,
J.
,
Xing
,
Y.
,
Liang
,
K.
, and
Wang
,
S.
,
2015
, “
Kinematic Design of a Novel Spatial Remote Center-of-Motion Mechanism for Minimally Invasive Surgical Robot
,”
J. Med. Dev.
,
9
(
1
), p.
011003
.
12.
Nisar
,
S.
,
Endo
,
T.
, and
Matsuno
,
F.
,
2017
, “
Design and Kinematic Optimization of a Two Degrees-of-Freedom Planar Remote Center of Motion Mechanism for Minimally Invasive Surgery Manipulators
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031013
.
13.
Zong
,
G.
,
Pei
,
X.
,
Yu
,
J.
, and
Bi
,
S.
,
2008
, “
Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms
,”
Mech. Mach. Theory
,
43
(
12
), pp.
1585
1595
.
14.
Kim
,
D.
,
Kobayashi
,
E.
,
Dohi
,
T.
, and
Sakuma
,
I.
,
2002
, “
A New, Compact MR-Compatible Surgical Manipulator for Minimally Invasive Liver Surgery
,” International Conference on Medical Image Computing and Computer-Assisted Intervention (
MICCAI
2002), Tokyo, Japan, Sept. 25–28, pp.
99
106
.
15.
Yoshida
,
S.
,
Kanno
,
T.
, and
Kawashima
,
K.
,
2016
, “
A Novel RCM Mechanism Using Pneumatically Driven Flexible Joint for Laparoscopic Forceps Holder
,”
IEEE International Symposium on Robot and Human Interactive Communication
(
RO-MAN
2016), New York, Aug. 26–31, pp. 1132–1137.
16.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.
17.
Vandini
,
A.
,
Salerno
,
A.
,
Payne
,
C. J.
, and
Yang
,
G. Z.
,
2014
, “
Vision-Based Motion Control of a Flexible Robot for Surgical Applications
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp.
6205
6211
.
18.
Walker
,
I. D.
,
2013
, “
Continuous Backbone ‘Continuum’ Robot Manipulators
,”
ISRN Rob.
,
2013
, p. 726506.
19.
Xu
,
K.
, and
Simaan
,
N.
,
2010
, “
Intrinsic Wrench Estimation and Its Performance Index for Multisegment Continuum Robots
,”
IEEE Trans. Rob.
,
26
(
3
), pp.
555
561
.
20.
Takikawa
,
K.
,
Miyazaki
,
R.
,
Kanno
,
T.
,
Endo
,
G.
, and
Kawashima
,
K.
,
2016
, “
Pneumatically Driven Multi-DOF Surgical Forceps Manipulator With a Bending Joint Mechanism Using Elastic Bodies
,”
J. Rob. Mechatronics
,
28
(
4
), pp.
559
567
.
21.
Weichert
,
F.
,
Bachmann
,
D.
,
Rudak
,
B.
, and
Fisseler
,
D.
,
2013
, “
Analysis of the Accuracy and Robustness of the Leap Motion Controller
,”
Sensors
,
13
(
5
), pp.
6380
6393
.
22.
Guna
,
J.
,
Jakus
,
G.
,
Poganik
,
M.
,
Tomai
,
S.
, and
Sodnik
,
J.
,
2014
, “
An Analysis of the Precision and Reliability of the Leap Motion Sensor and Its Suitability for Static and Dynamic Tracking
,”
Sensors
,
14
(
12
), pp.
3702
3720
.
You do not currently have access to this content.