Abstract

Tendon sheath mechanism (TSM) is an effective power transmission system to access remote locations through tortuous channels, and it is widely used in endoscopic surgical robots. However, owing to deformation of TSM during power transmission, the input–output hysteresis is expressed in the form of backlash-like hysteresis. This paper is premised on the idea that sheath deformation can occur if the sheath is fixed only at certain points rather than being fully fixed at all points. Based on our hypothesis, a new TSM-pair backlash-like hysteresis model was derived, which considers the deformation property of the sheath. Experimental setups were designed to validate the new model, and its mechanical parameters were identified. The experimental results revealed that the sheath significantly deforms and that such deformation produces backlash-like hysteresis together with the tendon deformation. This model can be used to provide accurate prediction and control of TSM.

References

1.
Yang
,
J.
,
Abdel-Malek
,
K.
, and
Potratz
,
J.
,
2005
, “
Design and Prototyping of an Active Hand Prosthetic Device
,”
Ind. Rob.: Int. J. Rob.
,
32
(
1
), pp.
71
78
. 10.1108/01439910510573327
2.
Makino
,
S.
,
Kawaharazuka
,
K.
,
Kawamura
,
M.
,
Asano
,
Y.
,
Okada
,
K.
, and
Inaba
,
M.
,
2017
, “
High-Power, Flexible, Robust Hand: Development of Musculoskeletal Hand Using Machined Springs and Realization of Self-Weight Supporting Motion With Humanoid
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
1187
1192
.
3.
Kaneko
,
M.
,
Wada
,
M.
,
Maekawa
,
H.
, and
Tanie
,
K.
,
1991
, “
A New Consideration on Tendon-Tension Control System of Robot Hands
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Sacramento, CA
,
Apr. 9–11
, pp.
1028
1033
.
4.
Perretta
,
S.
,
Dallemagne
,
B.
,
Barry
,
B.
, and
Marescaux
,
J.
,
2013
, “
The ANUBISCOPE Flexible Platform Ready for Prime Time: Description of the First Clinical Case
,”
Surg. Endosc.
,
27
(
7
), p.
2630
. 10.1007/s00464-013-2818-6
5.
Phee
,
S.
,
Low
,
S.
,
Sun
,
Z.
,
Ho
,
K.
,
Huang
,
W.
, and
Thant
,
Z.
,
2008
, “
Robotic System for no-Scar Gastrointestinal Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
4
(
1
), pp.
15
22
. 10.1002/rcs.179
6.
Fuchs
,
K.-H.
, and
Breithaupt
,
W.
,
2012
, “
Transgastric Small Bowel Resection With the New Multitasking Platform EndoSAMURAI for Natural Orifice Transluminal Endoscopic Surgery
,”
Surg. Endosc.
,
26
(
8
), pp.
2281
2287
. 10.1007/s00464-012-2173-z
7.
Tay
,
G.
,
Tan
,
H. K.
,
Nguyen
,
T. K.
,
Phee
,
S. J.
, and
Iyer
,
N. G.
,
2018
, “
Use of the EndoMaster Robot-Assisted Surgical System in Transoral Robotic Surgery: A Cadaveric Study
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
14
(
4
), p.
e1930
. 10.1002/rcs.1930
8.
Kim
,
Y.-H.
,
Park
,
Y.-J.
,
In
,
H.
,
Jeong
,
C. W.
, and
Cho
,
K.-J.
,
2016
, “
Design Concept of Hybrid Instrument for Laparoscopic Surgery and Its Verification Using Scale Model Test
,”
IEEE/ASME Trans. Mechatronics
,
21
(
1
), pp.
142
153
.
9.
Focacci
,
F.
,
Piccigallo
,
M.
,
Tonet
,
O.
,
Megali
,
G.
,
Pietrabissa
,
A.
, and
Dario
,
P.
,
2007
, “
Lightweight Hand-Held Robot for Laparoscopic Surgery
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Roma, Italy
,
Apr. 10–14
, pp.
599
604
.
10.
Do
,
T.
,
Tjahjowidodo
,
T.
,
Lau
,
M. W. S.
, and
Phee
,
S. J.
,
2014
, “
An Investigation of Friction-Based Tendon Sheath Model Appropriate for Control Purposes
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
97
114
. 10.1016/j.ymssp.2013.08.014
11.
Do
,
T. N.
,
Tjahjowidodo
,
T.
,
Lau
,
M. W. S.
, and
Phee
,
S. J.
,
2014
, “
Dynamic Friction-Based Force Feedback for Tendon-Sheath Mechanism in Notes System
,”
Int. J. Comput. Electr. Eng.
,
6
(
3
), pp.
252
258
. 10.7763/IJCEE.2014.V6.833
12.
Do
,
T. N.
,
Tjahjowidodo
,
T.
,
Lau
,
M. W. S.
, and
Phee
,
S. J.
,
2015
, “
A new Approach of Friction Model for Tendon-Sheath Actuated Surgical Systems: Nonlinear Modelling and Parameter Identification
,”
Mech. Mach. Theory
,
85
, pp.
14
24
. 10.1016/j.mechmachtheory.2014.11.003
13.
Palli
,
G.
, and
Melchiorri
,
C.
,
2006
, “
Model and Control of Tendon-Sheath Transmission Systems
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Orlando, FL
,
May 15–19
, pp.
988
993
.
14.
Phee
,
S. J.
,
Low
,
S.
,
Dario
,
P.
, and
Menciassi
,
A.
,
2010
, “
Tendon Sheath Analysis for Estimation of Distal end Force and Elongation for Sensorless Distal end
,”
Robotica
,
28
(
7
), pp.
1073
1082
. 10.1017/S026357470999083X
15.
Wang
,
Z.
,
Sun
,
Z.
, and
Phee
,
S. J.
,
2013
, “
Modeling Tendon-Sheath Mechanism With Flexible Configurations for Robot Control
,”
Robotica
,
31
(
7
), pp.
1131
1142
. 10.1017/S0263574713000386
16.
Sun
,
Z.
,
Wang
,
Z.
, and
Phee
,
S. J.
,
2014
, “
Elongation Modeling and Compensation for the Flexible Tendon-Sheath System
,”
IEEE/ASME Trans. Mechatronics
,
19
(
4
), pp.
1243
1250
. 10.1109/TMECH.2013.2278613
17.
Kaneko
,
M.
,
Yamashita
,
T.
, and
Tanie
,
K.
,
1991
, “
Basic Considerations on Transmission Characteristics for Tendon Drive Robots
,”
IEEE International Conference on Advanced Robotics (ICAR)
,
Pisa, Italy, June
, pp.
827
832
.
18.
Fuxiang
,
T.
, and
Xingsong
,
W.
,
2008
, “
The Design of a Tendon-Sheath-Driven Robot
,”
IEEE International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
,
Auckland, New Zealand
,
Dec. 2–4
, pp.
280
284
.
19.
Chen
,
L.
, and
Wang
,
X.
,
2012
, “
Modeling of the Tendon-Sheath Actuation System
,”
IEEE International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
,
Auckland, New Zealand
,
Nov. 28–30
, pp.
489
494
.
20.
Li
,
J.
,
Wang
,
X.
, and
Xi
,
R.
,
2016
, “
Tip Force Tracking Control Based on the Tendon-Sheath Transmission Model and 3D Reconstruction of a Long Slender Rescue Robot
,”
IEEE International Workshop on Advanced Motion Control (AMC)
,
Auckland, New Zealand
,
Apr. 22–24
, pp.
448
454
.
21.
Lin
,
C.
,
Xingsong
,
W.
, and
Fuxiang
,
T.
,
2009
, “
Tendon-Sheath Actuated Robots and Transmission System
,”
IEEE International Conference on Mechatronics and Automation (ICMA)
,
Changchun, China
,
Aug. 9–12
, pp.
3173
3178
.
22.
Sun
,
Z.
,
Wang
,
Z.
, and
Phee
,
S. J.
,
2015
, “
Modeling and Motion Compensation of a Bidirectional Tendon-Sheath Actuated System for Robotic Endoscopic Surgery
,”
Comput. Methods Programs Biomed.
,
119
(
2
), pp.
77
87
. 10.1016/j.cmpb.2015.03.001
23.
Wu
,
Q.
,
Wang
,
X.
,
Chen
,
L.
, and
Du
,
F.
,
2015
, “
Transmission Model and Compensation Control of Double-Tendon-Sheath Actuation System
,”
IEEE Trans. Ind. Electron.
,
62
(
3
), pp.
1599
1609
. 10.1109/TIE.2014.2360062
24.
Xu
,
W.
,
Poon
,
C. C.
,
Yam
,
Y.
, and
Chiu
,
P.
,
2017
, “
Motion Compensated Controller for a Tendon-Sheath-Driven Flexible Endoscopic Robot
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
13
(
1
), p.
e1747
. 10.1002/rcs.1747
25.
Agrawal
,
V.
,
Peine
,
W. J.
,
Yao
,
B.
, and
Choi
,
S.
,
2010
, “
Control of Cable Actuated Devices Using Smooth Backlash Inverse
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Anchorage, AK
,
May 3–7
, pp.
1074
1079
.
26.
Do
,
T. N.
,
Tjahjowidodo
,
T.
,
Lau
,
M.
, and
Phee
,
S. J.
,
2015
, “
Adaptive Control for Enhancing Tracking Performances of Flexible Tendon–Sheath Mechanism in Natural Orifice Transluminal Endoscopic Surgery
,”
Mechatronics
,
28
, pp.
67
78
. 10.1016/j.mechatronics.2015.04.002
27.
Do
,
T. N.
,
Tjahjowidodo
,
T.
,
Lau
,
M.
, and
Phee
,
S. J.
,
2016
, “
Real-Time Enhancement of Tracking Performances for Cable-Conduit Mechanisms-Driven Flexible Robots
,”
Rob. Comput.-Integr. Manuf.
,
37
, pp.
197
207
. 10.1016/j.rcim.2015.05.001
28.
Do
,
T. N.
,
Tjahjowidodo
,
T.
,
Lau
,
M. W. S.
, and
Phee
,
S. J.
,
2017
, “
Position Control of Asymmetric Nonlinearities for a Cable-Conduit Mechanism
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
3
), pp.
1515
1523
. 10.1109/TASE.2015.2438319
You do not currently have access to this content.