Abstract

In this paper, a task-dependent energetic analysis of robotic manipulators is presented. The proposed approach includes a novel performance index, which relates the energy consumption of a robotic manipulator to its inertia ellipsoid. To validate the method, the dynamic and electro-mechanic models of a three degrees-of-freedom (3-DOF) SCARA robot are implemented and the influence of the location of a predefined point-to-point task (such as a pick-and-place operation) within the robot workspace is considered. The task-dependent analysis provides energy consumption maps that are compared with the prediction of the theoretical formulation based on the proposed trajectory energy index (TEI), which can be used to optimally locate the task to obtain minimal energy consumption without having to compute it through extensive dynamic simulations. Results show the effectiveness of the method and the good agreement between the TEI and the effective energy consumption within the whole workspace of the robot for several trajectories.

References

1.
Kucukvar
,
M.
,
Cansev
,
B.
,
Egilmez
,
G.
,
Onat
,
N. C.
, and
Samadi
,
H.
,
2016
, “
Energy-Climate-Manufacturing Nexus: New Insights From the Regional and Global Supply Chains of Manufacturing Industries
,”
Appl. Energy
,
184
, pp.
889
904
. 10.1016/j.apenergy.2016.03.068
2.
Carabin
,
G.
,
Wehrle
,
E.
, and
Vidoni
,
R.
,
2017
, “
A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems
,”
Robotics
,
6
(
4
), p.
39
. 10.3390/robotics6040039
3.
Yin
,
H.
,
Liu
,
J.
, and
Yang
,
F.
,
2019
, “
Hybrid Structure Design of Lightweight Robotic Arms Based on Carbon Fiber Reinforced Plastic and Aluminum Alloy
,”
IEEE Access
,
7
, pp.
64932
64945
. 10.1109/ACCESS.2019.2915363
4.
Khalaf
,
P.
, and
Richter
,
H.
,
2016
, “
Parametric Optimization of Stored Energy in Robots With Regenerative Drive Systems
,”
IEEE International Conference on Advanced Intelligent Mechatronics
,
Banff, AB, Canada, IEEE
, pp.
1424
1429
.
5.
Scalera
,
L.
,
Palomba
,
I.
,
Wehrle
,
E.
,
Gasparetto
,
A.
, and
Vidoni
,
R.
,
2019
, “
Natural Motion for Energy Saving in Robotic and Mechatronic Systems
,”
Appl. Sci.
,
9
(
17
), p.
3516
. 10.3390/app9173516
6.
Scalera
,
L.
,
Carabin
,
G.
,
Vidoni
,
R.
, and
Wongratanaphisan
,
T.
,
2019
, “
Energy Efficiency in a 4-DOF Parallel Robot Featuring Compliant Elements
,”
Int. J. Mech. Control
,
20
(
2
), pp.
49
57
.
7.
Iwamura
,
M.
, and
Schiehlen
,
W.
,
2016
, “
Control and Experiments With Energy-Saving Scara Robots
,”
Symposium on Robot Design, Dynamics and Control
,
Udine, Italy, Springer
, pp.
153
161
.
8.
Deepak
,
S. R.
, and
Ananthasuresh
,
G.
,
2012
, “
Perfect Static Balance of Linkages by Addition of Springs But Not Auxiliary Bodies
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021014
. 10.1115/1.4006521
9.
Richiedei
,
D.
, and
Trevisani
,
A.
,
2020
, “
Optimization of the Energy Consumption Through Spring Balancing of Servo-Actuated Mechanisms
,”
ASME J. Mech. Des.
,
142
(
1
), p.
012301
. 10.1115/1.4043936
10.
Karimi Eskandary
,
P.
,
Belzile
,
B.
, and
Angeles
,
J.
,
2019
, “
Trajectory-Planning and Normalized-Variable Control for Parallel Pick-and-Place Robots
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031001
. 10.1115/1.4042631
11.
Boscariol
,
P.
, and
Richiedei
,
D.
,
2019
, “
Energy-Efficient Design of Multipoint Trajectories for Cartesian Robots
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
1853
1870
. 10.1007/s00170-018-03234-4
12.
Carabin
,
G.
,
Vidoni
,
R.
, and
Wehrle
,
E.
,
2018
, “
Energy Saving in Mechatronic Systems Through Optimal Point-to-Point Trajectory Generation Via Standard Primitives
,”
International Conference of IFToMM ITALY
,
Cassino, Italy, Springer
, pp.
20
28
.
13.
Paes
,
K.
,
Dewulf
,
W.
,
Vander Elst
,
K.
,
Kellens
,
K.
, and
Slaets
,
P.
,
2014
, “
Energy Efficient Trajectories for an Industrial ABB Robot
,”
Proc. CIRP
,
15
, pp.
105
110
. 10.1016/j.procir.2014.06.043
14.
Ho
,
P. M.
,
Uchiyama
,
N.
,
Sano
,
S.
,
Honda
,
Y.
,
Kato
,
A.
, and
Yonezawa
,
T.
,
2014
, “
Simple Motion Trajectory Generation for Energy Saving of Industrial Machines
,”
SICE J. Control Meas. Syst. Int.
,
7
(
1
), pp.
29
34
. 10.9746/jcmsi.7.29
15.
Patel
,
S.
, and
Sobh
,
T.
,
2015
, “
Manipulator Performance Measures—A Comprehensive Literature Survey
,”
J. Int. Rob. Syst.
,
77
(
3–4
), pp.
547
570
.
16.
Asada
,
H.
,
1984
, “
Dynamic Analysis and Design of Robot Manipulators Using Inertia Ellipsoids
,”
International Conference on Robotics and Automation
,
Atlanta, GA, IEEE
, pp.
94
102
.
17.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
. 10.1177/027836498500400201
18.
Kim
,
J.-O.
, and
Khosla
,
K.
,
1991
, “
Dexterity Measures for Design and Control of Manipulators
,”
International Workshop on Intelligent Robotics and Systems
,
Osaka, Japan
, pp.
758
763
.
19.
Klein
,
C. A.
, and
Blaho
,
B. E.
,
1987
, “
Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators
,”
Int. J. Rob. Res.
,
6
(
2
), pp.
72
83
. 10.1177/027836498700600206
20.
Tanev
,
T.
, and
Stoyanov
,
B.
,
2000
, “
On the Performance Indexes for Robot Manipulators
,”
Prob. Eng. Cybern. Rob.
,
49
, pp.
64
71
.
21.
Kim
,
S.-G.
, and
Ryu
,
J.
,
2003
, “
New Dimensionally Homogeneous Jacobian Matrix Formulation by Three End-Effector Points for Optimal Design of Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
19
(
4
), pp.
731
736
.
22.
Altuzarra
,
O.
,
Salgado
,
O.
,
Petuya
,
V.
, and
Hernández
,
A.
,
2006
, “
Point-Based Jacobian Formulation for Computational Kinematics of Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1407
1423
. 10.1016/j.mechmachtheory.2006.01.011
23.
Pond
,
G.
, and
Carretero
,
J. A.
,
2006
, “
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1505
1519
. 10.1016/j.mechmachtheory.2006.01.003
24.
Ruggiu
,
M.
,
2010
, “
Kinematic and Dynamic Analysis of a Two-Degree-of-Freedom Spherical Wrist
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031006
. 10.1115/1.4001889
25.
Merlet
,
J.-P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
. 10.1115/1.2121740
26.
Li
,
Q.
,
Zhang
,
N.
, and
Wang
,
F.
,
2017
, “
New Indices for Optimal Design of Redundantly Actuated Parallel Manipulators
,”
J. Mech. Rob.
,
9
(
1
), p.
011007
. 10.1115/1.4035126
27.
Boschetti
,
G.
, and
Trevisani
,
A.
,
2018
, “
Cable Robot Performance Evaluation by Wrench Exertion Capability
,”
Robotics
,
7
(
2
), p.
15
. 10.3390/robotics7020015
28.
Khalilpour
,
S. A.
,
Loloei
,
A. Z.
,
Taghirad
,
H. D.
, and
Masouleh
,
M. T.
,
2013
,
Feasible Kinematic Sensitivity in Cable Robots Based on Interval Analysis
,
Springer-Verlag
,
Berlin Heidelberg
, pp.
233
249
.
29.
Seriani
,
S.
,
Gallina
,
P.
, and
Gasparetto
,
A.
,
2014
, “
A Performance Index for Planar Repetitive Workspace Robots
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031005
. 10.1115/1.4026826
30.
Rosenstein
,
M. T.
, and
Grupen
,
R. A.
,
2002
, “
Velocity-Dependent Dynamic Manipulability
,”
International Conference on Robotics and Automation
,
Washington, DC, IEEE
, pp.
2424
2429
.
31.
Kurazume
,
R.
, and
Hasegawa
,
T.
,
2006
, “
A New Index of Serial-Link Manipulator Performance Combining Dynamic Manipulability and Manipulating Force Ellipsoids
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
1022
1028
. 10.1109/TRO.2006.878949
32.
Dos Santos
,
R. R.
,
Steffen
,
V.
, and
Saramago
,
S. d. F. P.
,
2010
, “
Optimal Task Placement of a Serial Robot Manipulator for Manipulability and Mechanical Power Optimization
,”
Int. Inform. Manage.
,
2
(
9
), p.
512
. 10.1016/j.ijinfomgt.2010.03.008
33.
Boschetti
,
G.
,
Rosa
,
R.
, and
Trevisani
,
A.
,
2013
, “
Optimal Robot Positioning Using Task-Dependent and Direction-Selective Performance Indexes: General Definitions and Application to a Parallel Robot
,”
Rob. Comput. Int. Manuf.
,
29
(
2
), pp.
431
443
. 10.1016/j.rcim.2012.09.013
34.
Ur-Rehman
,
R.
,
Caro
,
S.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2010
, “
Multi-Objective Path Placement Optimization of Parallel Kinematics Machines Based on Energy Consumption, Shaking Forces and Maximum Actuator Torques: Application to the Orthoglide
,”
Mech. Mach. Theory
,
45
(
8
), pp.
1125
1141
. 10.1016/j.mechmachtheory.2010.03.008
35.
Boscariol
,
P.
,
Scalera
,
L.
, and
Gasparetto
,
A.
,
2019
, “
Task-Dependent Energetic Analysis of a 3 DOF Industrial Manipulator
,”
International Conference on Robotics in Alpe-Adria Danube Region
,
Kaiserslautern, Germany, Springer
, pp.
162
169
.
36.
Park
,
R. H.
,
1929
, “
Two-Reaction Theory of Synchronous Machines Generalized Method of Analysis—Part I
,”
Trans. Am. Inst. Electr. Eng.
,
48
(
3
), pp.
716
727
. 10.1109/T-AIEE.1929.5055275
37.
Paryanto
,
Brossog
,
M.
,
Bornschlegl
,
M.
, and
Franke
,
J.
, et al
,
2015
, “
Reducing the Energy Consumption of Industrial Robots in Manufacturing Systems
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5–8
), pp.
1315
1328
. 10.1007/s00170-014-6737-z
38.
Meike
,
D.
,
Pellicciari
,
M.
, and
Berselli
,
G.
,
2013
, “
Energy Efficient Use of Multirobot Production Lines in the Automotive Industry: Detailed System Modeling and Optimization
,”
IEEE Trans. Autom. Sci. Eng.
,
11
(
3
), pp.
798
809
. 10.1109/TASE.2013.2285813
39.
Al-Naseem
,
O.
,
Erickson
,
R. W.
, and
Carlin
,
P.
,
2000
, “
Prediction of Switching Loss Variations by Averaged Switch Modeling
,”
15th Applied Power Electronics Conference and Exposition
,
New Orleans, LA
, Vol.
1
, IEEE, pp.
242
248
.
40.
Biagiotti
,
L.
, and
Melchiorri
,
C.
,
2008
,
Trajectory Planning for Automatic Machines and Robots
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
41.
Richiedei
,
D.
, and
Trevisani
,
A.
,
2016
, “
Analytical Computation of the Energy-Efficient Optimal Planning in Rest-to-Rest Motion of Constant Inertia Systems
,”
Mechatronics
,
39
, pp.
147
159
. 10.1016/j.mechatronics.2016.05.004
You do not currently have access to this content.