Abstract

Mechanical devices such as robots are widely adopted for limb rehabilitation. Due to the variety of human body parameters, the rehabilitation motion for different patients usually has its individual pattern; hence, we adopt clustering-based machine learning technique to find a limited number of motion patterns for upper-limb rehabilitation, so that they could represent the large amount of those from people who have various body parameters. By using the regression motion of the clustering result as the target, in this article, we seek to apply kinematic mapping-based motion synthesis framework to design a 1-degree-of-freedom (DOF) mechanism, such that it could lead the patients’ upper limb through the target motion. Also, considering rehab training generally involves a large amount of repetition on a daily basis, this article has developed a rehab system with unity3d based on virtual reality (VR). The proposed device and system could provide an immersive experience to the users, as well as the rehab motion data to the administrative staff for evaluation of users’ status. The construction of the integrated system and the experimental trial of the prototype are presented at the end of this article.

References

1.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
,
Wiley
,
New York
.
2.
D’Onofrio
,
G.
,
Fiorini
,
L.
,
Hoshino
,
H.
,
Matsumori
,
A.
,
Okabe
,
Y.
,
Tsukamoto
,
M.
,
Limosani
,
R.
,
Vitanza
,
A.
,
Greco
,
F.
, and
Greco
,
A.
,
2018
, “
Assistive Robots for Socialization in Elderly People: Results Pertaining to the Needs of the Users
,”
Aging Clin. Exp. Res.
,
31
(
9
), pp.
1313
1329
.
3.
Sugar
,
T. G.
,
He
,
J.
,
Koeneman
,
E. J.
,
Koeneman
,
J. B.
,
Herman
,
R.
,
Huang
,
H.
,
Schultz
,
R. S.
,
Herring
,
D. E.
,
Wanberg
,
J.
, and
Balasubramanian
,
S.
,
2007
, “
Design and Control of RUPERT: A Device for Robotic Upper Extremity Repetitive Therapy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
336
346
.
4.
Holt
,
R.
,
Makower
,
S.
,
Jackson
,
A.
,
Culmer
,
P.
, and
Bhakta
,
B.
,
2007
, “
User Involvement in Developing Rehabilitation Robotic Devices an Essential Requirement
,”
Proceedings of IEEE 10th International Conference on Rehabilitation Robotics
,
The Netherlands
,
June 12–15
,
IEEE
, pp.
219
227
.
5.
Zhang
,
Y. B.
,
Wang
,
Z. X.
,
Ji
,
L. H.
, and
Bi
,
S.
,
2005
, “
The Clinical Application of the Upper Extremity Compound Motions Rehabilitation Training Robot
,”
IEEE International Conference on Rehabilitation Robotics
,
Chicago, IL
,
June 28–July 1
,
IEEE
, pp.
91
94
.
6.
Perry
,
J. C.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatron.
,
12
(
4
), pp.
408
417
.
7.
Haraguchi
,
M.
,
Kikuchi
,
T.
,
Jin
,
Y.
,
Fukushima
,
K.
,
Furusho
,
J.
, and
Inoue
,
A.
,
2007
, “
3-D/Quasi-3-D Rehabilitation Systems for Upper Limbs Using ER Actuators With High Safety
,”
IEEE International Conference on Robotics and Biomimetics
,
Sanya, China
,
Dec. 15–18
,
IEEE
, pp.
1482
1487
.
8.
Naghavi
,
N.
, and
Mahjoob
,
M. J.
,
2015
, “
Design and Control of an Active 1-DoF Mechanism for Knee Rehabilitation
,”
Disabil. Rehabil. Assist. Technol.
,
2015
(
7
), pp.
1
7
.
9.
Franci
,
R.
,
Parenti-Castelli
,
V.
,
Belvedere
,
C.
, and
Leardini
,
A.
,
2009
, “
A New One-DOF Fully Parallel Mechanism for Modelling Passive Motion at the Human Tibiotalar Joint
,”
J. Biomech.
,
42
(
10
), pp.
1403
1408
.
10.
Zhao
,
P.
,
Zhu
,
L.
,
Li
,
X.
, and
Zi
,
B.
,
2019
, “
Design of Planar 1-DOF Cam-Linkage for Lower-Limb Rehabilitation Via Kinematic-Mapping Motion Synthesis Framework
,”
ASME. J. Mech. Rob.
,
11
(
4
), p.
041006
.
11.
Chen
,
W.
,
Song
,
W.
,
Chen
,
H.
,
Li
,
Q.
, and
Zhao
,
P.
,
2019
, “
Motion Synthesis for Upper-Limb Rehabilitation Motion With Clustering-Based Machine Learning Method
,”
Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition. Volume 3: Biomedical and Biotechnology Engineering
,
Salt Lake City, UT
,
Nov. 11–14
,
ASME
, p.
V003T04A066
.
12.
Erdman
,
A. G.
, and
Sandor
,
G. N.
,
1997
,
Mechanism Design: Analysis and Synthesis
, 3rd ed,
Prentice Hall
,
NJ
.
13.
Angeles
,
J.
, and
Bai
,
S.
,
2005
, “
Some Special Cases of The Burmester Problem for Four and Five Poses
,”
2005 ASME Design Engineering Technical Conferences
,
Long Beach, CA
,
Sept. 24–28
,
Paper No. DETC2005-84871
.
14.
Ge
,
Q. J.
,
Zhao
,
P.
,
Li
,
X.
, and
Purwar
,
A.
,
2012
, “
A Novel Apporach to Algebraic Fitting of Constraint Manifolds for Planar 4R Motion Approximation
,”
2012 ASME Mechanisms and Robotics Conference
,
Chicago, IL
,
Aug. 12–15
,
Paper No. DETC2012-71190
.
15.
Zhao
,
P.
,
Li
,
X.
,
Zhu
,
L.
,
Zi
,
B.
, and
Ge
,
Q. J.
,
2016
, “
A Novel Motion Synthesis Approach With Expandable Solution Space for Planar Linkages Based on Kinematic-Mapping
,”
Mech. Mach. Theory.
,
105
(
11
), pp.
164
175
.
16.
Zhao
,
P.
,
Ge
,
Q. J.
, and
Purwar
,
A.
,
2004
, “
On the Complete Synthesis of Finite Positions With Constraint Decomposition via Kinematic Mapping
,
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Paper No. V05AT08A052
.
17.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
North-Holland
,
Amsterdam
.
18.
McCarthy
,
J. M.
,
1990
,
Introducation to Theoretical Kinematics
,
MIT
,
Cambridge, MA
.
19.
Ravani
,
B.
, and
Roth
,
B.
,
1983
, “
Motion Synthesis Using Kinematic Mappings
,”
ASME J. Mech., Transm., Autom. Des.
,
105
(
3
), pp.
460
467
.
20.
Bodduluri
,
R.
, and
McCarthy
,
J. M.
,
1992
, “
Finite Position Synthesis Using the Image NCurve of a Spherical Four-Bar Motion
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
55
60
.
21.
Ge
,
Q. J.
, and
Larchelle
,
P.
,
1999
, “
Algebraic Motion Approximation With NURBS Motions and Its Application to Spherical Mechanism Synthesis
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
529
532
.
22.
Wu
,
J.
,
2010
, “
Interactive Dimensional Synthesis and Motion Design of Planar 6R Single-Loop Closed Chains Via Constraint Manifold Modification
,”
ASME. J. Mech. Rob.
,
2
(
3
), p.
031012
.
23.
Hayes
,
M. J. D
, and
Rusu
,
S. R.
,
2011
, “
Quadric Surface Fitting Applications to Approximate Dimensional Synthesis
,”
13th World Congress in Mechanism and Machine Science.
,
Guanajuato, Mexico
,
June 19–25
.
24.
Li
,
X.
,
Ge
,
X.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2015
, “
A Unified Algorithm for Analysis and Simulation of Planar Four-Bar Motions Defined With R- and P-Joints
,”
ASME. J. Mech. Rob.
,
7
(
1
), p.
011014
.
25.
Veerbeek
,
J. M.
,
van Wegen
,
E.
,
van Peppen
,
R.
,
van der Wees
,
P. J.
,
Hendriks
,
E.
,
Rietberg
,
M.
, and
Kwakkel
,
G.
,
2014
, “
What Is the Evidence for Physical Therapy Poststroke? A Systematic Review and Meta-Analysis
,”
PLoS One.
,
9
(
2
), p.
e87987
.
26.
Y.
Park
,
C.-H.
Morone
, and
B. -H.
Lee
,
2013
, “
Clinical Usefulness of the Virtual Reality-Based Postural Control Training on the Gait Ability in Patients With Stroke
,”
J. Exercise Rehabilitation
,
9
(
5
), pp.
489
494
.
27.
Morone
,
G.
,
Tramontano
,
M.
,
Iosa
,
M.
,
Shofany
,
J.
,
Iemma
,
A.
,
Musicco
,
M.
,
Paolucci
,
S.
, and
Caltagirone
,
C.
,
2014
, “
The Efficacy of Balance Training With Video Game-Based Therapy in SubAcute Stroke Patients: A Randomized Controlled Trial
,”
BioMed. Res. Int.
,
2014
, p.
580861
.
28.
Rose
,
T.
,
Nam
,
C. S.
, and
Chen
,
K. B.
,
2018
, “
Immersion of Virtual Reality for Rehabilitation - Review
,”
Appl. Ergon.
,
69
(
2018
), pp.
153
161
.
29.
Standen
,
P. J.
,
Threapleton
,
K.
,
Richardson
,
A.
,
Connell
,
L.
,
Brown
,
D. J.
,
Battersby
,
S.
,
Platts
,
F.
, and
Burton
,
A.
,
2017
, “
A Low Cost Virtual Reality System for Home Based Rehabilitation of the Arm Following Stroke: A Randomised Controlled Feasibility Trial
,”
Clinical Rehabil.
,
31
(
3
), pp.
340
350
.
You do not currently have access to this content.