Abstract

In this article, we present the design of a novel ankle rehabilitation robot (ARR), called the Flex-ARR, that employs a compliant parallel kinematic mechanism (PKM) with decoupled degrees-of-freedom. While multiple ARRs have been developed and commercialized, their clinical adoption has been limited primarily because they do not emulate the natural motion of the ankle. Based on a review of existing ARRs and their limitations, this article defines functional requirements and design specifications for an optimal ARR. These are then used to develop a design strategy followed by conceptual and detailed design of a novel ARR. The proposed Flex-ARR is designed to collocate the biological center of rotation of the ankle with that of the robot's center of rotation to allow natural ankle motion. The strategic use of a compliant PKM in the Flex-ARR not only absorbs any residual misalignment between these two centers but also helps inherently accommodate variations in user foot sizes with minimal adjustments. Detailed design includes the ARR structure with adjustable features, compliant PKM optimization, sensor and actuator selection, and an alignment tool.

References

1.
Brockett
,
C. L.
, and
Chapman
,
G. J.
,
2016
, “
Biomechanics of the Ankle
,”
Orthop. Trauma
,
30
(
3
), pp.
232
238
.
2.
Zhang
,
M.
,
Davies
,
T.
, and
Xie
,
S.
,
2013
, “
Effectiveness of Robot-Assisted Therapy on Ankle Rehabilitation—A Systematic Review
,”
J. NeuroEngineering Rehabil.
,
10
(
1
), p.
30
.
3.
Wu
,
Y.-N.
,
Hwang
,
M.
,
Ren
,
Y.
,
Gaebler-Spira
,
D.
, and
Zhang
,
L.-Q.
,
2011
, “
Combined Passive Stretching and Active Movement Rehabilitation of Lower-Limb Impairments in Children With Cerebral Palsy Using a Portable Robot
,”
Neurorehabil. Neural Repair
,
25
(
4
), pp.
378
385
.
4.
Zhang
,
M.
,
2016
, “
Improving Effectiveness of Robot-Assisted Ankle Rehabilitation via Biomechanical Assessment and Interaction Control
,”
Ph.D. thesis
,
The University of Auckland
,
Auckland, New Zealand
.
5.
Hawson
,
S. T.
,
2011
, “
Physical Therapy and Rehabilitation of the Foot and Ankle in the Athlete
,”
Clin. Podiatr. Med. Surg.
,
28
(
1
), pp.
189
201
.
6.
Takeuchi
,
N.
, and
Izumi
,
S.-I.
,
2013
, “
Rehabilitation With Poststroke Motor Recovery: A Review With a Focus on Neural Plasticity
,”
Stroke Res. Treat.
,
2013
, p.
128641
.
7.
Alvarez-Perez
,
M. G.
,
Garcia-Murillo
,
M. A.
, and
Cervantes-Sánchez
,
J. J.
,
2019
, “
Robot-Assisted Ankle Rehabilitation: A Review
,”
Disabil. Rehabil. Assist. Technol.
,
15
(
4
), pp.
394
408
.
8.
Zhang
,
M.
,
Davies
,
T. C.
,
Zhang
,
Y.
, and
Xie
,
S.
,
2014
, “
Reviewing Effectiveness of Ankle Assessment Techniques for Use in Robot-Assisted Therapy
,”
J. Rehabil. Res. Dev.
,
51
(
4
), pp.
517
534
.
9.
Hancock
,
G. E.
,
Hepworth
,
T.
, and
Wembridge
,
K.
,
2018
, “
Accuracy and Reliability of Knee Goniometry Methods
,”
J. Exp. Orthop.
,
5
(
1
), p.
46
.
10.
Popoff
,
M.
,
Jourdan
,
C.
,
Dongas
,
A.
, and
Schnitzler
,
A.
,
2012
, “
Reliability of Goniometric Measurement of Ankle Dorsiflexion in Hemiparetic Patients
,”
Ann. Phys. Rehabil. Med.
,
55
(
Supplement 1
), p.
e28
.
11.
Spink
,
M. J.
,
Fotoohabadi
,
M. R.
, and
Menz
,
H. B.
,
2010
, “
Foot and Ankle Strength Assessment Using Hand-Held Dynamometry: Reliability and Age-Related Differences
,”
Gerontology
,
56
(
6
), pp.
525
532
.
12.
Salazar
,
A. M.
,
Ortega
,
A. B.
,
Velasco
,
K. G.
, and
Pliego
,
A. A.
,
2018
, “Mechatronic Integral Ankle Rehabilitation System: Ankle Rehabilitation Robot, Serious Game, and Facial Expression Recognition System,”
Advanced Topics on Computer Vision, Control and Robotics in Mechatronics
,
O. O.
Vergara Villegas
,
M.
Nandayapa
, and
I.
Soto
, eds.,
Springer International Publishing
,
Cham
, pp.
291
320
.
13.
Nurahmi
,
L.
,
Caro
,
S.
, and
Solichin
,
M.
,
2019
, “
A Novel Ankle Rehabilitation Device Based on a Reconfigurable 3-RPS Parallel Manipulator
,”
Mech. Mach. Theory
,
134
, pp.
135
150
.
14.
Saglia
,
J. A.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2008
, “
Geometry and Kinematic Analysis of a Redundantly Actuated Parallel Mechanism That Eliminates Singularities and Improves Dexterity
,”
ASME J. Mech. Des.
,
130
(
12
), p.
124501
.
15.
Jamwal
,
P. K.
,
Xie
,
S. Q.
,
Hussain
,
S.
, and
Parsons
,
J. G.
,
2014
, “
An Adaptive Wearable Parallel Robot for the Treatment of Ankle Injuries
,”
IEEE/ASME Trans. Mechatron.
,
19
(
1
), pp.
64
75
.
16.
Jamwal
,
P. K.
,
Hussain
,
S.
, and
Xie
,
S. Q.
,
2015
, “
Three-Stage Design Analysis and Multicriteria Optimization of a Parallel Ankle Rehabilitation Robot Using Genetic Algorithm
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
4
), pp.
1433
1446
.
17.
Siston
,
R. A.
,
Daub
,
A. C.
,
Giori
,
N. J.
,
Goodman
,
S. B.
, and
Delp
,
S. L.
,
2005
, “
Evaluation of Methods That Locate the Center of the Ankle for Computer-Assisted Total Knee Arthroplasty
,”
Clin. Orthop.
,
439
, pp.
129
135
.
18.
Alcocer
,
W.
,
Vela
,
L.
,
Blanco
,
A.
,
Gonzalez
,
J.
, and
Oliver
,
M.
,
2012
, “
Major Trends in the Development of Ankle Rehabilitation Devices
,”
Dyna
,
79
(
176
), pp.
45
55
.
19.
Hocoma
, n.d., “
Lokomat®
,” www.hocoma.com/solutions/lokomat/, Accessed October 3, 2019.
20.
Girone
,
M.
,
Burdea
,
G.
,
Bouzit
,
M.
,
Popescu
,
V.
, and
Deutsch
,
J. E.
,
2001
, “
A Stewart Platform-Based System for Ankle Telerehabilitation
,”
Auton. Robots
,
10
(
2
), pp.
203
212
.
21.
Li
,
J.
,
Zuo
,
S.
,
Zhang
,
L.
,
Dong
,
M.
,
Zhang
,
Z.
,
Tao
,
C.
, and
Ji
,
R.
,
2020
, “
Mechanical Design and Performance Analysis of a Novel Parallel Robot for Ankle Rehabilitation
,”
ASME. J. Mech. Robot.
,
12
(
5
), p.
051007
.
22.
Kumar
,
S.
,
Bongardt
,
B.
,
Simnofske
,
M.
, and
Kirchner
,
F.
,
2019
, “
Design and Kinematic Analysis of the Novel Almost Spherical Parallel Mechanism Active Ankle
,”
J. Intell. Robot. Syst.
,
94
(
2
), pp.
303
325
.
23.
Zhou
,
Z.
,
Zhou
,
Y.
,
Wang
,
N.
,
Gao
,
F.
,
Wei
,
K.
, and
Wang
,
Q.
,
2015
, “
A Proprioceptive Neuromuscular Facilitation Integrated Robotic Ankle–Foot System for Post Stroke Rehabilitation
,”
Robot. Auton. Syst.
,
73
, pp.
111
122
.
24.
Wang
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Chen
,
Y.
,
2013
, “
Design and Kinematical Performance Analysis of a 3-RUS/RRR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
ASME J. Mech. Robot.
,
5
(
4
), pp.
1
11
.
25.
Malosio
,
M.
,
Negri
,
S. P.
,
Pedrocchi
,
N.
,
Vicentini
,
F.
,
Caimmi
,
M.
, and
Molinari Tosatti
,
L.
,
2012
, “
A Spherical Parallel Three Degrees-of-Freedom Robot for Ankle-Foot Neuro-Rehabilitation
,”
2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
San Diego, CA
,
Aug. 28–Sept. 1
, IEEE.
26.
Yoon
,
J.
, and
Ryu
,
J.
,
2005
, “
A Novel Reconfigurable Ankle/Foot Rehabilitation Robot
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
.
27.
Liu
,
G.
,
Gao
,
J.
,
Yue
,
H.
,
Zhang
,
X.
, and
Lu
,
G.
,
2006
, “
Design and Kinematics Analysis of Parallel Robots for Ankle Rehabilitation
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
.
28.
Tsoi
,
Y. H.
, and
Xie
,
S. Q.
,
2008
, “
Design and Control of a Parallel Robot for Ankle Rehabilitation
,”
2008 15th International Conference on Mechatronics and Machine Vision in Practice
,
Auckland, New Zealand
,
Dec. 2–4
.
29.
Bi
,
Z. M.
,
2013
, “
Design of a Spherical Parallel Kinematic Machine for Ankle Rehabilitation
,”
Adv. Robot.
,
27
(
2
), pp.
121
132
.
30.
Lundberg
,
A.
,
Svensson
,
O.
,
Nemeth
,
G.
, and
Selvik
,
G.
,
1989
, “
The Axis of Rotation of the Ankle Joint
,”
J. Bone Joint Surg. Br.
,
71-B
(
1
), pp.
94
99
.
31.
Barnett
,
C. H.
, and
Napier
,
J. R.
,
1952
, “
The Axis of Rotation at the Ankle Joint in Man. Its Influence Upon the Form of the Talus and the Mobility of the Fibula
,”
J Anat.
,
86
(
1
), pp.
1
9
.
32.
Malosio
,
M.
,
Caimmi
,
M.
,
Ometto
,
M.
, and
Tosatti
,
L. M.
,
2014
, “
Ergonomics and Kinematic Compatibility of PKankle, a Fully-Parallel Spherical Robot for Ankle-Foot Rehabilitation
,”
5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics
,
São Paulo, Brazil
,
Aug. 12–15
.
33.
Jalgaonkar
,
N.
,
Kim
,
A.
, and
Awtar
,
S.
,
2020
, “
Design of an Ankle Rehab Robot With a Compliant Parallel Kinematic Mechanism
,”
ASME International Design Engineering Technical Conferences (IDETC)
,
Virtual Online
,
Aug. 17–19
, pp.
1
10
.
34.
Kinetec
, n.d., “
Kinetec Breva
,” https://kinetecuk.com/shop/cpm-active/ankle-cpms/kinetec-breva/, Accessed October 3, 2019.
35.
Kinetec
., n.d., “
Kinetec 5090 Club Foot CPM
,” https://kinetecuk.com/shop/cpm-active/ankle-cpms/kinetec-5090-club-foot-cpm/, Accessed October 3, 2019.
36.
Chattanooga
, n.d., “
OptiFlex Ankle CPM
,” https://www.chattanoogarehab.com/us/optiflex-ankle-cpm-2027, Accessed October 3, 2019.
37.
Biodex Medical Systems
, n.d., “
System 4 Pro
,” https://www.biodex.com/physical-medicine/products/dynamometers/system-4-pro, Accessed October 3, 2019.
38.
JACE Systems
, n.d., “
JACE Ankle A330 CPM
,” http://www.jacesystems.com/products/ankle/jace_ankle.htm, Accessed October 3, 2019.
39.
Dai
,
J. S.
,
Zhao
,
T.
, and
Nester
,
C.
,
2004
, “
Sprained Ankle Physiotherapy Based Mechanism Synthesis and Stiffness Analysis of a Robotic Rehabilitation Device
,”
Auton. Robots
,
16
(
2
), pp.
207
218
.
40.
Borges
,
P. R. T.
,
Santos
,
T. R. T.
,
Procópio
,
P. R. S.
,
Chelidonopoulos
,
J. H. D.
,
Zambelli
,
R.
, and
Ocarino
,
J. M.
,
2017
, “
Passive Stiffness of the Ankle and Plantar Flexor Muscle Performance After Achilles Tendon Repair: A Cross-Sectional Study
,”
Braz. J. Phys. Ther.
,
21
(
1
), pp.
51
57
.
41.
Garofolini
,
A.
,
Taylor
,
S.
,
McLaughlin
,
P.
,
Stokes
,
R.
,
Kusel
,
M.
, and
Mickle
,
K. J.
,
2019
, “
Repeatability and Accuracy of a Foot Muscle Strength Dynamometer
,”
Med. Eng. Phys.
,
67
, pp.
102
108
.
42.
White
,
R. M.
,
1982
,
Comparative Anthropometry of the Foot
,
Defense Technical Information Center
,
Fort Belvoir, VA
.
43.
Guggenberger
,
R.
,
Pfirrmann
,
C. W. A.
,
Koch
,
P. P.
, and
Buck
,
F. M.
,
2014
, “
Assessment of Lower Limb Length and Alignment by Biplanar Linear Radiography: Comparison With Supine CT and Upright Full-Length Radiography
,”
Am. J. Roentgenol.
,
202
(
2
), pp.
W161
W167
.
44.
Damerla
,
R.
, and
Awtar
,
S.
,
2020
, “
Constraint-Based Analysis of Parallel Kinematic Articulated Wrist Mechanisms
,”
ASME International Design Engineering Technical Conferences (IDETC)
,
Virtual Online
,
Aug. 17–19
, pp.
1
12
.
45.
Awtar
,
S.
,
Trutna
,
T. T.
,
Nielsen
,
J. M.
,
Abani
,
R.
, and
Geiger
,
J.
,
2010
, “
FlexDexTM: A Minimally Invasive Surgical Tool With Enhanced Dexterity and Intuitive Control
,”
ASME J. Med. Devices
,
4
(
3
), p.
035003
.
46.
Awtar
,
S.
, and
Nielsen
,
J.
,
2019
, “
Parallel Kinematic Mechanisms With Decoupled Rotational Motions
,”
US 10405936B2
.
47.
Yong
,
Y. K.
,
Lu
,
T.-F.
, and
Handley
,
D. C.
,
2008
, “
Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations
,”
Precis. Eng.
,
32
(
2
), pp.
63
70
.
48.
Pfeifer
,
S.
,
Hardegger
,
M.
,
Vallery
,
H.
,
List
,
R.
,
Foresti
,
M.
,
Riener
,
R.
, and
Perreault
,
E. J.
,
2011
, “
Model-Based Estimation of Active Knee Stiffness
,”
IEEE International Conference Rehabilitation Robotics
,
Zurich, Switzerland
,
June 27–July 1
.
You do not currently have access to this content.