Abstract

This paper presents a method for predicting endpoint coordinates, stress, and force to deflect stepped cantilever beams under large deflections. This method, the mixed-body model or MBM, combines small deflection theory and the pseudo-rigid-body model for large deflections. To analyze the efficacy of the model, the MBM is compared to a model that assumes the first step in the beam to be rigid, to finite element analysis, and to the numerical boundary value solution over a large sample set of loading conditions, geometries, and material properties. The model was also compared to physical prototypes. In all cases, the MBM agrees well with expected values. Optimization of the MBM parameters yielded increased agreement, leading to average errors of <0.01 to 3%. The model provides a simple, quick solution with minimal error that can be particularly helpful in design.

References

1.
Sanchez-Marin
,
F.
,
Roda-Casanova
,
V.
, and
Porras-Vazquez
,
A.
,
2018
, “
A New Analytical Model to Predict the Transversal Deflection Under Load of Stepped Shafts
,”
Int. J. Mech. Sci.
,
146
, pp.
91
104
.
2.
Liu
,
Z.
,
Song
,
W.
, and
Lu
,
Q.
,
2017
, “
A Piece-Wise Beam Model for Shafts With Abrupt Changes of Section in Gearbox Products
,”
International Conference on Advanced Mechatronic Systems (ICAMechS)
,
Xiamen, China
,
Dec. 6–9
, IEEE, pp.
318
323
.
3.
Diwan
,
A. A.
,
Al-Ansari
,
L. S.
,
Al-Saffar
,
A. A.
, and
Al-Anssari
,
Q. S.
,
2019
, “
Experimental and Theoretical Investigation of Static Deflection and Natural Frequency of Stepped Cantilever Beam
,”
Aust. J. Mech. Eng.
, pp.
1
13
.
4.
Li
,
S.-C.
,
Liang
,
L.
, and
Yu
,
Q.
,
2019
, “
Natural Frequency of Bending Vibration for Stepped Beam of Different Geometrical Characters and Materials
,”
Noise Vib. Worldwide
,
50
(
1
), pp.
3
12
.
5.
Ahmed
,
E.
,
Tamer
,
E.
, and
Said
,
F.
,
2020
, “
Optimal Design for Maximum Fundamental Frequency and Minimum Intermediate Support Stiffness for Uniform and Stepped Beams Composed of Different Materials
,” Technical Report, SAE Technical Paper.
6.
Wattanasakulpong
,
N.
, and
Chaikittiratana
,
A.
,
2016
, “
Adomian-Modified Decomposition Method for Large-Amplitude Vibration Analysis of Stepped Beams With Elastic Boundary Conditions
,”
Mech. Based Des. Struct. Mach.
,
44
(
3
), pp.
270
282
.
7.
Hamidizadeh
,
H.
,
Mashhadi
,
M. M.
, and
Mohammadi
,
Y.
,
2020
, “
Static Pull in Analysis of Stepped Microcantilever Beam Based on Strain Gradient Theory Using Differential Quadrature Method
,”
Mech. Based Des. Struct. Mach.
,
49
(
7
), pp.
1
14
.
8.
Ashok
,
A.
,
Gangele
,
A.
,
Pal
,
P.
, and
Pandey
,
A. K.
,
2018
, “
An Analysis of Stepped Trapezoidal-Shaped Microcantilever Beams for MEMS-Based Devices
,”
J. Micromech. Microeng.
,
28
(
7
), p.
075009
.
9.
Zhang
,
J.
,
Song
,
A.
,
Xu
,
X.
, and
Lu
,
W.
,
2016
, “
A Rigid and Flexible Structures Combined Deployable Boom for Space Exploration
,”
IEEE International Workshop on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, IEEE, pp.
2920
2926
.
10.
Mikulas
,
M. M.
,
Pappa
,
R. S.
,
Warren
,
J.
, and
Rose
,
G.
,
2015
, “
Telescoping Solar Array Concept for Achieving High Packaging Efficiency
,”
2nd AIAA Spacecraft Structures Conference
,
Kissimmee, FL
,
Jan. 5–9
, p.
1398
.
11.
Prajapati
,
S.
,
Gupta
,
V.
, and
Mukherjee
,
S.
,
2017
, “
Mathematical Modelling of Stepped Beam Energy Harvesting Using Euler–Bernoulli’s Theory
,”
International Conference on Physics and Mechanics of New Materials and Their Applications
,
Jabalpur, India
,
Oct. 14–16
, Springer, pp.
549
565
.
12.
Usharani
,
R.
,
Uma
,
G.
,
Umapathy
,
M.
, and
Choi
,
S.-B.
,
2018
, “
A Novel Piezoelectric Energy Harvester Using a Multi-stepped Beam With Rectangular Cavities
,”
Appl. Sci.
,
8
(
11
), p.
2091
.
13.
Terrazas
,
C. A.
,
Gaytan
,
S. M.
,
Rodriguez
,
E.
,
Espalin
,
D.
,
Murr
,
L. E.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2014
, “
Multi-material Metallic Structure Fabrication Using Electron Beam Melting
,”
Int. J. Adv. Manuf. Technol.
,
71
(
1
), pp.
33
45
.
14.
Desbiolles
,
B.
,
Bertsch
,
A.
, and
Renaud
,
P.
,
2019
, “
Ion Beam Etching Redeposition for 3d Multimaterial Nanostructure Manufacturing
,”
Microsyst. Nanoeng.
,
5
(
1
), pp.
1
8
.
15.
Hiller
,
J. D.
, and
Lipson
,
H.
,
2009
, “
Multi Material Topological Optimization of Structures and Mechanisms
,”
11th Annual Conference on Genetic and Evolutionary Computation
,
Montreal, Quebec, Canada
,
July 8–12
.
16.
Mattiasson
,
K.
,
1981
, “
Numerical Results From Large Deflection Beam and Frame Problems Analysed by Means of Elliptic Integrals
,”
Int. J. Numer. Methods Eng.
,
17
(
1
), pp.
145
153
.
17.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
18.
Wang
,
Z.
,
Sun
,
H.
,
Wang
,
B.
, and
Wang
,
P.
,
2020
, “
Adaptive Pseudo-Rigid-Body Model for Generalized Cross-Spring Pivots Under Combined Loads
,”
Adv. Mech. Eng.
,
12
(
12
), p.
1687814020966539
.
19.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
Pseudo-Rigid-Body Models for Circular Beams Under Combined Tip Loads
,”
Mech. Mach. Theory
,
106
, pp.
80
93
.
20.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2018
, “
A Versatile 3r Pseudo-Rigid-Body Model for Initially Curved and Straight Compliant Beams of Uniform Cross Section
,”
ASME J. Mech. Des.
,
140
(
9
), p.
092305
.
21.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
02005
.
22.
Li
,
S.
,
Hao
,
G.
,
Chen
,
Y.
,
Zhu
,
J.
, and
Berselli
,
G.
,
2021
, “
Nonlinear Analysis of a Class of Inversion-Based Compliant Cross-Spring Pivots
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031007
.
23.
Ma
,
F.
, and
Chen
,
G.
,
2014
, “
Chained Beam-Constraint-Model (CBCM): A Powerful Tool for Modeling Large and Complicated Deflections of Flexible Beams in Compliant Mechanisms
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, American Society of Mechanical Engineers, p. V05AT08A027.
24.
Shigley
,
J. E.
,
2015
,
Shigley’s Mechanical Engineering Design
,
Tata McGraw-Hill Education
,
New York
.
25.
Yoo
,
W.-S.
,
Park
,
S.-J.
,
Park
,
J.-Y.
, and
Sohn
,
J.-H.
,
2004
, “
Physical Experiments and Computer Simulations of a Stepped Cantilever Beam With a Hybrid Coordinate Formulation
,”
Mech. Based Des. Struct. Mach.
,
32
(
4
), pp.
515
532
.
26.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051002
.
27.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
28.
Frisch-Fay
,
R.
,
1962
,
Flexible Bars
,
Butterworths
,
London
.
29.
She
,
Y.
,
Gu
,
Z.
,
Song
,
S.
,
Su
,
H.-J.
, and
Wang
,
J.
,
2021
, “
Design, Modeling, and Manufacturing of a Variable Lateral Stiffness Arm Via Shape Morphing Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031020
.
30.
Nielson
,
A. J.
, and
Howell
,
L. L.
,
2001
, “
An Investigation of Compliant Micro-Half-Pantographs Using the Pseudorigid Body Model
,”
Mech. Based Des. Struct. Mach.
,
29
(
3
), pp.
317
330
.
31.
Su
,
H.-J.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
32.
Marković
,
K.
, and
Zelenika
,
S.
,
2017
, “
Optimized Cross-Spring Pivot Configurations With Minimized Parasitic Shifts and Stiffness Variations Investigated Via Nonlinear FEA
,”
Mech. Based Des. Struct. Mach.
,
45
(
3
), pp.
380
394
.
33.
Seymour
,
K.
,
Bilancia
,
P.
,
Magleby
,
S.
, and
Howell
,
L.
,
2021
, “
Hinges and Curved Lamina Emergent Torsional Joints in Cylindrical Developable Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031002
.
34.
Gou
,
Y.
,
Chen
,
G.
, and
Howell
,
L. L.
,
2019
, “
A Design Approach to Fully Compliant Multistable Mechanisms Employing a Single Bistable Mechanism
,”
Mech. Based Des. Struct. Mach.
,
49
(
7
), pp.
1
24
.
35.
Jin
,
M.
,
Yang
,
Z.
,
Ynchausti
,
C.
,
Zhu
,
B.
,
Zhang
,
X.
, and
Howell
,
L. L.
,
2020
, “
Large-Deflection Analysis of General Beams in Contact-Aided Compliant Mechanisms Using Chained Pseudo-Rigid-Body Model
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031005
.
36.
Verotti
,
M.
,
2020
, “
A Pseudo-Rigid Body Model Based on Finite Displacements and Strain Energy
,”
Mech. Mach. Theory
,
149
, p.
103811
.
37.
Bagivalu Prasanna
,
P.
,
Bapat
,
S. G.
,
Midha
,
A.
, and
Lodagala
,
V.
,
2020
, “
A Methodology for Determining Static Mode Shapes of a Compliant Mechanism Using the Pseudo-Rigid-Body Model Concept and the Degrees-of-Freedom Analysis
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021115
.
38.
Bilancia
,
P.
,
Berselli
,
G.
,
Bruzzone
,
L.
, and
Fanghella
,
P.
,
2019
, “
A CAD/CAE Integration Framework for Analyzing and Designing Spatial Compliant Mechanisms Via Pseudo-Rigid-Body Methods
,”
Rob. Comput.-Integr. Manuf.
,
56
, pp.
287
302
.
39.
Bailey
,
N.
,
Lusty
,
C.
, and
Keogh
,
P.
,
2018
, “
Nonlinear Flexure Coupling Elements for Precision Control of Multibody Systems
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
474
(
2218
), p.
20180395
.
You do not currently have access to this content.