Abstract

Energy-efficient gaits in walking robots can be obtained by designing elastic systems that exhibit naturally emerging locomotion patterns. Biological legged locomotion serves as inspiration, as animals use different gaits to move at certain speeds while minimizing energy consumption. To understand the underlying dynamics of biological locomotion, simplified models have been proposed. The most common one, the SLIP (spring loaded inverted pendulum) model, can explain the effect of the radial elasticity of linear legs and helps to explain locomotion patterns, especially for running behaviors, in different legged systems. However, the SLIP model is inappropriate for the study of stability of limit cycles in systems with articulated legs, which are most commonly used in real robots. This paper introduces a novel quadrupedal template model featuring articulated elastic legs, non-constant leg stiffness, and dynamic leg swing. Numerical simulation with a continuation approach is used to discover the gaits emerging from the natural dynamics of the model, without imposing any contact sequence a priori. The stability of those gaits is also characterized, in order to facilitate the exploitation of the natural model dynamics for generating locomotion patterns for quadrupedal robots.

References

1.
Hoyt
,
D. F.
, and
Taylor
,
C. R.
,
1981
, “
Gait and the Energetics of Locomotion in Horses
,”
Nature
,
292
(
5820
), pp.
239
240
.
2.
Alexander
,
R.
,
1989
, “
Optimization and Gaits in the Locomotion of Vertebrates
,”
Physiol. Rev.
,
69
(
4
), pp.
1199
1227
.
3.
Alexander
,
R.
,
2002
, “
Tendon Elasticity and Muscle Function
,”
Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol.
,
133
(
4
), pp.
1001
1011
.
4.
Burdet
,
E.
,
Osu
,
R.
,
Franklin
,
D.
,
Milner
,
T.
, and
Kawato
,
M.
,
2001
, “
The Central Nervous System Stabilizes Unstable Dynamics by Learning Optimal Impedance
,”
Nature
,
414
, pp.
446
449
.
5.
Collins
,
S.
,
Ruina
,
A.
,
Tedrake
,
R.
, and
Wisse
,
M.
,
2005
, “
Efficient Bipedal Robots Based on Passive-Dynamic Walkers
,”
Science
,
307
(
5712
), pp.
1082
1085
.
6.
Seyfarth
,
A.
,
Geyer
,
H.
,
Günther
,
M.
, and
Blickhan
,
R.
,
2002
, “
A Movement Criterion for Running
,”
J. Biomech.
,
35
(
5
), pp.
649
655
.
7.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2006
, “
Compliant Leg Behaviour Explains Basic Dynamics of Walking and Running
,”
Proc. R. Soc. B: Biol. Sci.
,
273
(
1603
), pp.
2861
2867
.
8.
Gan
,
Z.
, and
Remy
,
C. D.
,
2014
, “
A Passive Dynamic Quadruped That Moves in a Large Variety of Gaits
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Chicago, IL
,
Sept. 14–18
, pp.
4876
4881
.
9.
Gan
,
Z.
,
Wiestner
,
T.
,
Weishaupt
,
M. A.
,
Waldern
,
N. M.
, and
David Remy
,
C.
,
2016
, “
Passive Dynamics Explain Quadrupedal Walking, Trotting, and Tölting
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
2
), p.
021008
.
10.
Gan
,
Z.
,
Yesilevskiy
,
Y.
,
Zaytsev
,
P.
, and
Remy
,
C. D.
,
2018
, “
All Common Bipedal Gaits Emerge From a Single Passive Model
,”
J. R. Soc. Interface
,
15
(
146
), p.
20180455
.
11.
Gan
,
Z.
,
Jiao
,
Z.
, and
Remy
,
C. D.
,
2018
, “
On the Dynamic Similarity Between Bipeds and Quadrupeds: A Case Study on Bounding
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
3614
3621
.
12.
Kashiri
,
N.
,
Abate
,
A.
,
Abram
,
S. J.
,
Albu-Schäffer
,
A.
,
Clary
,
P. J.
,
Daley
,
M.
,
Faraji
,
S.
, et al.,
2018
, “
An Overview on Principles for Energy Efficient Robot Locomotion
,”
Front. Rob. AI
,
5
.
13.
Yesilevskiy
,
Y.
,
Gan
,
Z.
, and
David Remy
,
C.
,
2018
, “
Energy-Optimal Hopping in Parallel and Series Elastic One-Dimensional Monopeds
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031008
.
14.
Karssen
,
J. D.
,
Haberland
,
M.
,
Wisse
,
M.
, and
Kim
,
S.
,
2015
, “
The Effects of Swing-Leg Retraction on Running Performance: Analysis, Simulation, and Experiment
,”
Robotica
,
33
(
10
), pp.
2137
2155
.
15.
Rummel
,
J.
, and
Seyfarth
,
A.
,
2008
, “
Stable Running With Segmented Legs
,”
Int. J. Rob. Res.
,
27
(
8
), pp.
919
934
.
16.
Heim
,
S.
, and
Spröwitz
,
A.
,
2019
, “
Beyond Basins of Attraction: Quantifying Robustness of Natural Dynamics
,”
IEEE Trans. Rob.
,
35
(
4
), pp.
939
952
.
17.
Boffa
,
L.
,
Sesselmann
,
A.
, and
Roa
,
M. A.
,
2021
, “
Quadrupedal Template Model for Parametric Stability Analysis of Trotting Gaits
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27-Oct. 1
, pp.
916
922
.
18.
Cao
,
Q.
, and
Poulakakis
,
I.
,
2012
, “
Passive Quadrupedal Bounding With a Segmented Flexible Torso
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vilamoura, Portugal
,
Oct. 7–12
, pp.
2484
2489
.
19.
Waldron
,
K. J.
,
Estremera
,
J.
,
Csonka
,
P. J.
, and
Singh
,
S. P. N.
,
2009
, “
Analyzing Bounding and Galloping Using Simple Models
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011002
.
20.
Zhang
,
Z. G.
,
Fukuoka
,
Y.
, and
Kimura
,
H.
,
2004
, “
Stable Quadrupedal Running Based on a Spring-Loaded Two-Segment Legged Model
,”
Proceedings of the IEEE International Conference Robotics and Automation (ICRA)
,
New Orleans, LA
,
Apr. 26–May 1
, pp.
2601
2606
.
21.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
2013
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
, Vol. 42,
Springer Science & Business Media
,
New York
.
22.
Hermann
,
M.
, and
Saravi
,
M.
,
2016
,
Nonlinear Ordinary Differential Equations
,
Springer
,
New Delhi, India
.
23.
Lakatos
,
D.
,
Ploeger
,
K.
,
Loeffl
,
F.
,
Seidel
,
D.
,
Schmidt
,
F.
,
Gumpert
,
T.
,
John
,
F.
,
Bertram
,
T.
, and
Albu-Schäffer
,
A.
,
2018
, “
Dynamic Locomotion Gaits of a Compliantly Actuated Quadruped With SLIP-Like Articulated Legs Embodied in the Mechanical Design
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
3908
3915
.
24.
Hof
,
A. L.
,
1996
, “
Scaling Gait Data to Body Size
,”
Gait Posture
,
4
(
3
), pp.
222
223
.
25.
Xi
,
W.
,
Yesilevskiy
,
Y.
, and
Remy
,
C. D.
,
2016
, “
Selecting Gaits for Economical Locomotion of Legged Robots
,”
Int. J. Rob. Res.
,
35
(
9
), pp.
1140
1154
.
26.
Griffin
,
T. M.
,
Kram
,
R.
,
Wickler
,
S. J.
, and
Hoyt
,
D. F.
,
2004
, “
Biomechanical and Energetic Determinants of the Walk–Trot Transition in Horses
,”
J. Exp. Biol.
,
207
(
24
), pp.
4215
4223
.
27.
Hackert
,
R.
,
Maes
,
L.
,
Herbin
,
M.
,
Libourel
,
P. A.
, and
Abourachid
,
A.
,
2008
, “
Limb Preference in the Gallop of Dogs and the Half-Bound of Pikas on Flat Ground
,”
Laterality
,
13
(
4
), pp.
310
319
.
28.
Toeda
,
M.
,
Aoi
,
S.
,
Fujiki
,
S.
,
Funato
,
T.
,
Tsuchiya
,
K.
, and
Yanagihara
,
D.
,
2020
, “
Gait Generation and Its Energy Efficiency Based on Rat Neuromusculoskeletal Model
,”
Front. Neurosci.
,
13
.
29.
Farley
,
C. T.
, and
Taylor
,
C. R.
,
1991
, “
A Mechanical Trigger for the Trot–Gallop Transition in Horses
,”
Science
,
253
(
5017
), pp.
306
308
.
30.
Collins
,
S.
,
Wisse
,
M.
, and
Ruina
,
A.
,
2001
, “
A Three-Dimensional Passive-Dynamic Walking Robot With Two Legs and Knees
,”
Int. J. Rob. Res.
,
20
(
7
), pp.
607
615
.
You do not currently have access to this content.