Abstract

For parallel robots with general configuration, it is difficult to achieve the large rotation range requirement for pelvic fracture reduction. Application-based workspace optimization is important. In this paper, a 3-revolute-revolute-prismatic-spherical (3-RRPS) parallel robot with optimized parameters is studied, which can offer a large orientation workspace and relatively compact configuration. The inverse kinematics of the robot is analyzed by the closed-loop vector method. The cylindrical coordinate searching algorithm and boundary extraction method are adopted to calculate the orientation workspace. Defining the comprehensive branch length (CBL) to express robot’s compactness under the premise of satisfying the required orientation workspace. The genetic algorithm (GA) is adopted to optimize structural parameters of the robot with CBL as the objective function. The optimization results show that when the orientation angles of the moving platform are limited to not less than 28 deg, the CBL of the robot is 291 mm. Finally, the virtual prototype simulation verification shows that the orientation angles of the moving platform around x-axis and y-axis can reach ±28 deg, the orientation angle around z-axis can reach ±40 deg, which meets the requirements of the rotational range for pelvic fracture reduction surgery.

References

1.
Xu
,
J.
,
Han
,
W.
,
Wang
,
J.
,
Lin
,
H.
,
Wang
,
B.
, and
Feng
,
Y.
,
2015
, “
Pelvic Reduction Robot: An Experimental Study
,”
Chin. J. Bone Jt. Surg.
,
8
(
3
), pp.
242
245
.
2.
Du
,
H.
,
Hu
,
L.
,
Li
,
C.
,
Wang
,
T.
,
Zhao
,
L.
,
Li
,
Y.
,
Mao
,
Z.
, et al
,
2015
, “
Advancing Computer-Assisted Orthopaedic Surgery Using a Hexapod Device for Closed Diaphyseal Fracture Reduction
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
11
(
3
), pp.
348
359
.
3.
Abedin-Nasab
,
M. H.
,
Farahmand
,
F.
, and
Gallardo-Alvarado
,
J.
,
2017
, “
The Wide-Open Three-Legged Parallel Robot for Long-Bone Fracture Reduction
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
015001
.
4.
Saeedi-Hosseiny
,
M. S.
,
Alruwaili
,
F.
,
McMillan
,
S.
,
Iordachita
,
I.
, and
Abedin-Nasab
,
M. H.
,
2022
, “
A Surgical Robotic System for Long-Bone Fracture Alignment: Prototyping and Cadaver Study
,”
IEEE Trans. Med. Robot. Bionics
,
4
(1), pp.
172
182
5.
Essomba
,
T.
, and
Phu
,
S. N.
,
2019
, “
Kinematic Design of a Hybrid Mechanism for Bone Reduction Surgery
,”
Mech. Sci.
,
10
(
2
), pp.
589
604
.
6.
Zhang
,
L.
,
Li
,
J.
,
Dong
,
M.
,
Fang
,
B.
,
Cui
,
Y.
,
Zuo
,
S.
, and
Zhang
,
K.
,
2019
, “
Design and Workspace Analysis of a Parallel Ankle Rehabilitation Robot (PARR)
,”
J. Healthc. Eng.
,
2019
(
10
), p.
4164790
.
7.
Song
,
S. E.
,
Hata
,
N.
,
Iordachita
,
I.
,
Fichtinger
,
G.
,
Tempany
,
C.
, and
Tokuda
,
J.
,
2012
, “
A Workspace-Orientated Needle-Guiding Robot for 3T MRI-Guided Transperineal Prostate Intervention: Evaluation of In-Bore Workspace and MRI Compatibility
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
9
(
1
), pp.
67
74
.
8.
Wu
,
C.
,
Qian
,
X.
,
Yu
,
W.
, and
Yu
,
J.
,
2018
, “
Workspace Analysis and Optimization of Linear Driven Parallel Robot
,”
Trans. Chin. Soc. Agric. Mach.
,
49
(
1
), pp.
381
389
.
9.
Eryılmaz
,
C.
, and
Omurlu
,
V. E.
,
2019
, “
SQP Optimization of 6dof 3×3 UPU Parallel Robotic System for Singularity Free and Maximized Reachable Workspace
,”
J. Robot.
,
2019
(
1
), p.
3928705
.
10.
Kucuk
,
S.
,
2018
, “
Dexterous Workspace Optimization for a New Parallel Robot Manipulator
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
064503
.
11.
Panda
,
S.
,
Mishra
,
D.
, and
Biswal
,
B. B.
,
2012
, “
A Multi-Objective Workspace Optimization of 3R Manipulator Using Modified PSO
,”
International Conference on Swarm, Evolutionary, and Memetic Computing
,
Bhubaneswar, India
,
Dec. 20
, pp.
90
97
.
12.
Li
,
Q.
,
Zhang
,
Z.
,
Lao
,
Y.
,
Xuan
,
T.
,
Luo
,
R.
,
Wang
,
M.
,
Pan
,
H.
, et al
,
2017
, “
Comparison of Reliability and Reproducibility of Three Different Classifications in Pelvic Fracture
,”
Chongqing Med.
,
46
(
25
), pp.
3539
3541
.
13.
Tile
,
M.
,
1988
, “
Pelvic Ring Fractures: Should They Be Fixed?
,”
J. Bone. Joint. Surg.
,
70
(
1
), pp.
1
12
.
14.
Khoury
,
A.
,
Kreder
,
H.
,
Skrinskas
,
T.
,
Hardisty
,
M.
,
Tile
,
M.
, and
Whyne
,
C. M.
,
2008
, “
Lateral Compression Fracture of the Pelvis Represents a Heterogeneous Group of Complex 3D Patterns of Displacement
,”
Injury
,
39
(
8
), pp.
893
902
.
15.
Huang
,
Z.
,
Liu
,
J.
, and
Li
,
Y.
,
2011
, “
150-Year Unified Mobility Formula Issue
,”
J. Yanshan Univ.
,
35
(
1
), pp.
1
14
.
16.
Ayiz
,
C.
, and
Kucuk
,
S.
,
2009
, “
The Kinematics of Industrial Robot Manipulators Based on the Exponential Rotational Matrices
,”
IEEE International Symposium on Industrial Electronics
,
Seoul, South Korea
,
July 5–8
, pp.
977
982
.
17.
Kucuk
,
S.
, and
Gungor
,
B. D.
,
2017
, “
Inverse Kinematics Solution of a New Hybrid Robot Manipulator Proposed for Medical Purposes
,”
Proceedings of the 2016 Medical Technologies National Conference
,
Antalya, Turkey
,
Oct. 27–29
, pp.
1
4
.
You do not currently have access to this content.