Abstract

This paper proposes a shape-adaptive electroadhesion dielectric elastomer actuator (EA-DEA) pad gripper that can actively adapt to the shape of curved objects and quickly handle various objects by combining an EA pad and a multi-layered DEA driven by electrostatic force. This gripper has a rapid release function capable of detaching thin and light objects in less than 0.2 s with bending motion of multi-layered DEA and reverse polarity voltage. Moreover, combined with a transform mechanism that changes the posture of the EA-DEA pad gripper, a multifunctional gripper handling various objects from thin to irregularly shaped objects is implemented. The high voltage controller is configured to generate the variable and reversible voltages required for the control of the developed gripper. To verify the performance and practicality of the proposed multifunctional gripper system, we demonstrate the gripping task in three modes formed by controlling the EA-DEA pad gripper and the transform mechanism to adapt to the object shape. According to the experimental results, this gripper can reliably and rapidly pick and place various objects, such as thin film, hexahedron, cylinders, spheres, irregular shaped, deformable, and fragile objects corresponding to each mode.

References

1.
Hughes
,
J.
,
Culha
,
U.
,
Giardina
,
F.
,
Guenther
,
F.
,
Rosendo
,
A.
, and
Iida
,
F.
,
2016
, “
Soft Manipulators and Grippers: A Review
,”
Front. Robot. AI
,
3
(
69
), pp.
1
12
.
2.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
, pp. 1–33.
3.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem. Int. Ed.
,
50
(
8
), pp.
1890
1895
.
4.
Yufei
,
H.
,
Zheyuan
,
G.
,
Zhexin
,
X.
,
Shaoya
,
G.
,
Xingbang
,
Y.
,
Ziyu
,
R.
,
Tianmiao
,
W.
, and
Li
,
W.
,
2016
, “
Universal Soft Pneumatic Robotic Gripper With Variable Effective Length
,”
IEEE Proceedings of the 34th Chinese Control and Design Conference
,
Chengdu, China
,
July 27–29
, pp.
6109
6114
.
5.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics that Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
6.
Kofod
,
G.
,
Wirges
,
W.
,
Paajanen
,
M.
, and
Bauer
,
S.
,
2007
, “
Energy Minimization for Self-Organized Structure Formation and Actuation
,”
Appl. Phys. Lett.
,
90
(
8
), p.
081916
.
7.
Lau
,
G.
,
Heng
,
K.
,
Ahmed
,
A. S.
, and
Shrestha
,
M.
,
2017
, “
Dielectric Elastomer Fingers for Versatile Grasping and Nimble Pinching
,”
Appl. Phys. Lett.
,
110
(
18
), p.
182906
.
8.
Li
,
J.
,
Liu
,
L.
,
Liu
,
Y.
, and
Leng
,
J.
,
2018
, “
Dielectric Elastomer Spring-Roll Bending Actuators: Applications in Soft Robotics and Design
,”
Soft Robot.
,
6
(
1
), pp.
69
81
.
9.
Rosset
,
S.
, and
Shea
,
H.
,
2016
, “
Small, Fast and Tough: Shrinking Down Integrated Elastomer Transducers
,”
Appl. Phys. Rev.
,
3
(
3
), p.
031105
.
10.
Hawkes
,
E. W.
,
Jiang
,
H.
,
Christensen
,
D. L.
,
Han
,
A. K.
, and
Cutkosky
,
M. R.
,
2018
, “
Grasping Without Squeezing: Design and Modeling of Shear-Activated Grippers
,”
IEEE Trans. Robot.
,
34
(
2
), pp.
303
316
.
11.
Jiang
,
H.
,
Hawkes
,
E. W.
,
Fuller
,
C.
,
Estrada
,
M. A.
,
Suresh
,
S. A.
,
Abcouwer
,
N.
,
Han
,
A. K.
, et al.,
2017
, “
A Robotic Device Using Gecko-Inspired Adhesives Can Grasp and Manipulate Large Objects in Microgravity
,”
Sci. Robot.
,
2
(
7
), p.
eaan4545
.
12.
Schaler
,
E. W.
,
Ruffatto III
,
D.
,
Glick
,
P.
,
White
,
V.
, and
Parness
,
A.
,
2017
, “
An Electrostatic Gripper for Flexible Objects
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
1172
1179
.
13.
Autumn
,
K.
, and
Peattie
,
A. M.
,
2002
, “
Mechanisms of Adhesion in Geckos
,”
Integr. Comp. Biol.
,
42
(
6
), pp.
1081
1090
.
14.
Guo
,
J.
,
Leng
,
J.
, and
Rossiter
,
J.
,
2020
, “
Electroadhesion Technologies for Robotics: A Comprehensive Review
,”
IEEE Trans. Robot.
,
36
(
2
), pp.
313
327
.
15.
Chen
,
R.
,
Song
,
R.
,
Zhang
,
Z.
,
Bai
,
L.
,
Liu
,
F.
,
Jiang
,
P.
,
Sindersberger
,
D.
,
Monkman
,
G. J.
, and
Guo
,
J.
,
2019
, “
Bio-Inspired Shape-Adaptive Soft Robotic Grippers Augmented With Electroadhesion Functionality
,”
Soft Robot.
,
6
(
6
), pp.
701
712
.
16.
Choi
,
K.
,
Kim
,
S.
,
Hwang
,
U.
,
Kim
,
J.
,
Park
,
I.
,
Jang
,
K.
,
Choi
,
H. J.
, et al.,
2020
, “
Lifting-Force Maximization of a Micropatterned Electroadhesive Device Comparable to the Human-Finger Grip
,”
ACS Appl. Electron. Mater.
,
2
(
6
), pp.
1596
1602
.
17.
Guo
,
J.
,
Elgeneidy
,
K.
,
Xiang
,
C.
,
Lohse
,
N.
,
Justham
,
L.
, and
Rossiter
,
J.
,
2018
, “
Soft Pneumatic Grippers Embedded With Stretchable Electroadhesion
,”
Smart Mater. Struct.
,
27
(
5
), p.
055006
.
18.
Xiang
,
C.
,
Guo
,
J.
, and
Rossiter
,
J.
,
2019
, “
Soft-Smart Robotic End Effectors With Sensing, Actuation, and Gripping Capabilities
,”
Smart Mater. Struct.
,
28
(
5
), p.
055034
.
19.
Shintake
,
J.
,
Rosset
,
S.
,
Schubert
,
B.
,
Floreano
,
D.
, and
Shea
,
H.
,
2016
, “
Versatile Soft Grippers With Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators
,”
Adv. Mater.
,
28
(
2
), pp.
231
238
.
20.
Gao
,
X.
,
Cao
,
C.
,
Guo
,
J.
, and
Conn
,
A.
,
2019
, “
Elastic Electroadhesion With Rapid Release by Integrated Resonant Vibration
,”
Adv. Mater. Technol.
,
4
(
1
), p.
1800378
.
21.
Hwang
,
G.
,
Park
,
J.
,
Cortes
,
D. S. D.
,
Hyeon
,
K.
, and
Kyung
,
K.
,
2021
, “
Electroadhesion Based High-Payload Soft Gripper With Mechanically Strengthened Structure
,”
IEEE Trans. Ind. Electron.
,
69
(
1
), pp.
642
651
.
22.
Dadkhah
,
M.
,
Zhao
,
Z.
,
Wettels
,
N.
, and
Spenko
,
M.
,
2016
, “
A Self-Aligning Gripper Using an Electrostatic/Gecko-Like Adhesive
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
1006
1011
.
23.
Alizadehyazdi
,
V.
,
Bonthron
,
M.
, and
Spenko
,
M.
,
2020
, “
An Electrostatic/Gecko-Inspired Adhesives Soft Robotic Gripper
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
4679
4686
.
24.
Nakamura
,
T.
, and
Yamamoto
,
A.
,
2017
, “
Modeling and Control of Electroadhesion Force in DC Voltage
,”
ROBOMECH J.
,
4
(
18
), pp.
1
10
.
25.
Jung
,
H. S.
,
Phung
,
H.
,
Park
,
J. H.
,
Yang
,
S. Y.
,
Kim
,
K.
,
Ko
,
J. U.
,
Hwang
,
S. T.
, and
Choi
,
H. R.
,
2021
, “
Development of a Small and Lightweight Missile Fin Control Actuation System Driven by Novel Dielectric Elastomer Actuators
,”
IEEE/ASME Trans. Mechatron.
,
26
(
2
), pp.
1002
1012
.
26.
Ruffatto III
,
D.
,
Shah
,
J.
, and
Spenko
,
M.
,
2013
, “
Optimization and Experimental Validation of Electrostatic Adhesive Geometry
,”
2013 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 2–9
, pp.
1
8
.
27.
Brecher
,
C.
,
Emonts
,
M.
,
Ozolin
,
B.
, and
Schares
,
R.
,
2013
, “
Handling of Preforms and Prepregs for Mass Production of Composites
,”
19th International Conference on Composite Materials
,
Palais des congrès, Montréal, Canada
,
July 28–Aug. 2
, pp.
4085
4093
.
28.
Prahlad
,
H. E.
,
Pelrine
,
R. E.
,
Guggenberg
,
P. A. V.
,
Kornbluh
,
R. D.
, and
Eckerle
,
J. S.
,
2013
, “
High Voltage Converters for Electrostatic Applications
,” US Patent US20130186699A1.
29.
Phung
,
H.
,
Hoang
,
P. T.
,
Jung
,
H. S.
,
Nguyen
,
T. D.
,
Nguyen
,
C. T.
, and
Choi
,
H. R.
,
2020
, “
Haptic Display Responsive to Touch Driven by Soft Actuator and Soft Sensor
,”
IEEE/ASME Trans. Mechatron.
,
26
(
5
), pp.
2495
2505
.
You do not currently have access to this content.