Abstract

Fixed-clamped flexures are one common component of compliant mechanisms which remain difficult to design due to their unique force– and stress–deflection profiles. In this work, an analytical stress-deflection model for fixed-clamped flexures is proposed that utilizes a modified pseudo-rigid-body model. Proof-of-concept mechanical testing and finite element analysis demonstrate that the model can predict forces and stresses within 3.5% for a range of steel flexure topologies. Special analysis is carried out on the characteristic radius factor, a parameter to which model accuracy is particularly sensitive. For slender flexures or large deflection scenarios, a dynamic characteristic radius factor is required to capture the resulting nonlinear axial strain. By evaluating the effects of loading, geometry, and material properties, an analytical equation that can predict an optimal value is proposed. When integrated into our model, this equation for an appropriate characteristic radius factor can predict the optimal parameter value within 0.45 ± 0.47%, resulting in average model error of 3.45 ± 2.09% across a large range of flexure thicknesses and deflections. The distinct combination of axial and bending stresses experienced in fixed-clamped flexures has made mechanisms that use these members challenging to design. This work provides a model that designers, engineers, and researchers can draw from to understand stress profiles present in these flexible members.

References

1.
Howell
,
L. L.
,
2013
, “Compliant Mechanisms,”
21st Century Kinematics
,
Springer
,
London
, pp.
189
216
.
2.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.
3.
Wu
,
K.
, and
Zheng
,
G.
,
2022
, “
Theoretical Analysis on Nonlinear Buckling, Post-Buckling of Slender Beams and Bi-Stable Mechanisms
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031015
.
4.
Palathingal
,
S.
, and
Ananthasuresh
,
G.
,
2019
, “
Analysis and Design of Fixed–Fixed Bistable Arch-Profiles Using a Bilateral Relationship
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031002
.
5.
Hao
,
G.
, and
Li
,
H.
,
2015
, “
Nonlinear Analytical Modeling and Characteristic Analysis of a Class of Compound Multibeam Parallelogram Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041016
.
6.
Hao
,
G.
, and
Li
,
H.
,
2016
, “
Extended Static Modeling and Analysis of Compliant Compound Parallelogram Mechanisms Considering the Initial Internal Axial Force
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041008
.
7.
Pisano
,
A. P.
, and
Cho
,
Y.-H.
,
1990
, “
Mechanical Design Issues in Laterally-Driven Microstructures
,”
Sens. Actuators., A.
,
23
(
1–3
), pp.
1060
1064
.
8.
Howell
,
L. L.
,
DiBiasio
,
C. M.
,
Cullinan
,
M. A.
,
Panas
,
R. M.
, and
Culpepper
,
M. L.
,
2010
, “
A Pseudo-Rigid-Body Model for Large Deflections of Fixed-Clamped Carbon Nanotubes
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
034501
.
9.
Rao
,
K. S.
,
Kumar
,
P. A.
,
Guha
,
K.
,
Sailaja
,
B.
,
Vineetha
,
K.
,
Baishnab
,
K.
, and
Sravani
,
K. G.
,
2021
, “
Design and Simulation of Fixed–fixed Flexure Type RF MEMS Switch for Reconfigurable Antenna
,”
Microsystem Technol.
,
27
(
2
), pp.
455
462
.
10.
Zhang
,
L.
, and
Zhao
,
Y.-P.
,
2003
, “
Electromechanical Model of RF MEMS Switches
,”
Microsystem Technol.
,
9
(
6
), pp.
420
426
.
11.
Sadeghian
,
H.
,
Rezazadeh
,
G.
,
Malekpour
,
E.
, and
Shafipour
,
A.
,
2006
, “
Pull-In Voltage of Fixed–Fixed End Type Mems Switches With Variative Electrostatic Area
,”
Sens. Transducers
,
66
(
4
), pp.
526
533
.
12.
Yang
,
J.
,
Jia
,
X.
, and
Kitipornchai
,
S.
,
2008
, “
Pull-In Instability of Nano-Switches Using Nonlocal Elasticity Theory
,”
J. Phys. D: Appl. Phys.
,
41
(
3
), p.
035103
.
13.
Cullinan
,
M. A.
,
Panas
,
R. M.
,
DiBiasio
,
C. M.
, and
Culpepper
,
M. L.
,
2012
, “
Scaling Electromechanical Sensors Down to the Nanoscale
,”
Sens. Actuators., A.
,
187
, pp.
162
173
.
14.
Ma
,
F.
, and
Chen
,
G.
,
2017
, “
Bi-BCM: A Closed-Form Solution for Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
014501
.
15.
Jones
,
F. D.
,
Ryffel
,
H. H.
,
Oberg
,
E.
,
McCauley
,
C. J.
, and
Heald
,
R. M.
,
2000
,
Machinery’s Handbook
, 26th ed.,
Industrial Press Inc.
,
New York
.
16.
Kimball
,
C.
, and
Tsai
,
L.-W.
,
2002
, “
Modeling of Flexural Beams Subjected to Arbitrary End Loads
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
223
235
.
17.
Zhao
,
J.
,
Jia
,
J.
,
He
,
X.
, and
Wang
,
H.
,
2008
, “
Post-Buckling and Snap-Through Behavior of Inclined Slender Beams
,”
ASME J. Appl. Mech.
,
75
(
4
), p.
041020
.
18.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051005
.
19.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
20.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
21.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081008
.
22.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
23.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
24.
Prasanna
,
P. B.
,
Bapat
,
S. G.
,
Midha
,
A.
, and
Lodagala
,
V.
,
2020
, “
A Methodology for Determining Static Mode Shapes of a Compliant Mechanism Using the Pseudo-Rigid-Body Model Concept and the Degrees-of-Freedom Analysis
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021115
.
25.
Mattson
,
C. A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2004
, “
Development of Commercially Viable Compliant Mechanisms Using the Pseudo-Rigid-Body Model: Case Studies of Parallel Mechanisms
,”
J. Intell. Material Syst. Struct.
,
15
(
3
), pp.
195
202
.
26.
ABAQUS
, “
ABAQUS Theory Manual, Version 6.6 Documentation
,” https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/stm/default.htm?startat=ch03s05ath73.html, Accessed January 25, 2022.
27.
ABAQUS
, “
Using a Beam Section Integrated During the Analysis to Define the Section Behavior, ABAQUS Docs
,” https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-c-usingbeamsection.htm, Accessed January 25, 2022.
You do not currently have access to this content.