Abstract

The accuracy of industrial robots is critical in many manufacturing applications. In this case, a self-developed automated fiber placement heavy-duty robot is used for the lay-up of carbon fiber composite prepregs, which requires high positioning accuracy. The mass of the robot body and end-effector exceeds 3 tons and 1 ton, respectively, resulting in considerable deformation and other errors due to the huge size and mass. Paradoxically, the work that our robot engaged in requires high precision, and the positioning accuracy needs to be less than 0.5 mm. This paper conducts a comprehensive analysis of the robot joint error, so as to improve the accuracy of the robot. A torsional and capsize deformation model for joints is established. In addition, the capsize torque and capsize axis of joint deformation are derived to determine the transformation relationship between joint frames. Chebyshev polynomials are used to describe joint-dependent errors. The Levenberg–Marquarelt (L–M) algorithm was used to identify the error model parameters. The effects of different error factors on the positioning accuracy were compared and analyzed. The validation result shows that the proposed model describes 88.11% of the positioning error, and the average residual error of the calibration can reach 0.132 mm. The identified joint-dependent error and the compliance error are 0.296 mm and 0.240 mm, accounting for 26.67% and 21.62% of the positioning error, respectively.

References

1.
Lin
,
Y.
,
Zhao
,
H.
, and
Ding
,
H.
,
2017
, “
Posture Optimization Methodology of 6R Industrial Robots for Machining Using Performance Evaluation Indexes
,”
Robot. Comput. Integr. Manuf.
,
48
, pp.
59
72
.
2.
Klimchik
,
A.
, and
Pashkevich
,
A.
,
2017
, “
Serial vs. Quasi-Serial Manipulators: Comparison Analysis of Elasto-Static Behaviors
,”
Mech. Mach. Theory
,
107
, pp.
46
70
.
3.
Chen
,
Y.
, and
Dong
,
F.
,
2013
, “
Robot Machining: Recent Development and Future Research Issues
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1489
1497
.
4.
Messay
,
T.
,
Ordóñez
,
R.
, and
Marcil
,
E.
,
2016
, “
Computationally Efficient and Robust Kinematic Calibration Methodologies and Their Application to Industrial Robots
,”
Robot. Comput. Integr. Manuf.
,
37
, pp.
33
48
.
5.
Simas
,
H.
, and
Di Gregorio
,
R.
,
2016
, “
Geometric Error Effects on Manipulators’ Positioning Precision: A General Analysis and Evaluation Method
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061016
.
6.
Xie
,
G.
,
Zhang
,
Z.
,
Shao
,
Z.
, and
Wang
,
L.
,
2022
, “
Research on the Orientation Error of the Translational Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031003
.
7.
Zeng
,
Y.
,
Tian
,
W.
, and
Liao
,
W.
,
2016
, “
Positional Error Similarity Analysis for Error Compensation of Industrial Robots
,”
Robot. Comput. Integr. Manuf.
,
42
, pp.
113
120
.
8.
Qi
,
J.
,
Chen
,
B.
, and
Zhang
,
D.
,
2021
, “
A Calibration Method for Enhancing Robot Accuracy Through Integration of Kinematic Model and Spatial Interpolation Algorithm
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061013
.
9.
Nubiola
,
A.
, and
Bonev
,
I. A.
,
2013
, “
Absolute Calibration of an ABB IRB 1600 Robot Using a Laser Tracker
,”
Robot. Comput. Integr. Manuf.
,
29
(
1
), pp.
236
245
.
10.
Pan
,
Z.
,
Polden
,
J.
,
Larkin
,
N.
,
Van Duin
,
S.
, and
Norrish
,
J.
,
2012
, “
Recent Progress on Programming Methods for Industrial Robots
,”
Robot. Comput. Integr. Manuf.
,
28
(
2
), pp.
87
94
.
11.
Guo
,
Y.
,
Yin
,
S.
,
Ren
,
Y.
,
Zhu
,
J.
,
Yang
,
S.
, and
Ye
,
S.
,
2015
, “
A Multilevel Calibration Technique for an Industrial Robot With Parallelogram Mechanism
,”
Precis. Eng.
,
40
, pp.
261
272
.
12.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech
,
22
(
2
), pp.
215
221
.
13.
Hayati
,
S. A.
,
1983
, “
Robot Arm Geometric Link Parameter Estimation
,”
The 22nd IEEE Conference on Decision and Control
,
San Antonio, TX
,
December
, pp.
1477
1483
.
14.
Jiang
,
Z.
,
Zhou
,
W.
,
Li
,
H.
,
Mo
,
Y.
,
Ni
,
W.
, and
Huang
,
Q.
,
2018
, “
A New Kind of Accurate Calibration Method for Robotic Kinematic Parameters Based on the Extended Kalman and Particle Filter Algorithm
,”
IEEE Trans. Ind. Electron.
,
65
(
4
), pp.
3337
3345
.
15.
Stone
,
H. W.
, and
Sanderson
,
A. C.
,
1988
, “
Statistical Performance Evaluation of the S-Model Arm Signature Identification Technique
,”
Proceedings 1988 IEEE International Conference on Robotics and Automation
,
Philadelphia, PA
,
Apr. 24–29
, pp.
939
946
.
16.
Zhuang
,
H.
,
Roth
,
Z. S.
, and
Hamano
,
F.
,
1990
, “
A Complete and Parametrically Continuous Kinematic Model for Robot Manipulators
,”
Proceedings, IEEE International Conference on Robotics and Automation
,
Cincinnati, OH
,
May 13–18
, pp.
92
97
.
17.
Zhuang
,
H.
,
Wang
,
L. K.
, and
Roth
,
Z. S.
,
1993
, “
Error-Model-Based Robot Calibration Using a Modified CPC Model
,”
Robot. Comput. Integr. Manuf.
,
10
(
4
), pp.
287
299
.
18.
Wu
,
L.
,
Yang
,
X.
,
Chen
,
K.
, and
Ren
,
H.
,
2015
, “
A Minimal POE-Based Model for Robotic Kinematic Calibration With Only Position Measurements
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
2
), pp.
758
763
.
19.
He
,
R.
,
Li
,
X.
,
Shi
,
T.
,
Wu
,
B.
,
Zhao
,
Y.
,
Han
,
F.
,
Yang
,
S.
,
Huang
,
S.
, and
Yang
,
S.
,
2015
, “
A Kinematic Calibration Method Based on the Product of Exponentials Formula for Serial Robot Using Position Measurements
,”
Robotica
,
33
(
6
), pp.
1295
1313
.
20.
Klimchik
,
A.
,
Pashkevich
,
A.
,
Chablat
,
D.
, and
Hovland
,
G.
,
2013
, “
Compliance Error Compensation Technique for Parallel Robots Composed of Non-perfect Serial Chains
,”
Robot. Comput. Integr. Manuf.
,
29
(
2
), pp.
385
393
.
21.
Zhou
,
J.
, and
Kang
,
H. J.
,
2015
, “
A Hybrid Least-Squares Genetic Algorithm-Based Algorithm for Simultaneous Identification of Geometric and Compliance Errors in Industrial Robots
,”
Adv. Mech. Eng.
,
7
(
6
), pp.
1
12
.
22.
Nguyen
,
H. N.
,
Le
,
P. N.
, and
Kang
,
H. J.
,
2019
, “
A New Calibration Method for Enhancing Robot Position Accuracy by Combining a Robot Model–Based Identification Approach and an Artificial Neural Network–Based Error Compensation Technique
,”
Adv. Mech. Eng.
,
11
(
1
), pp.
1
11
.
23.
Du
,
L.
,
Zhang
,
T.
, and
Dai
,
X.
,
2019
, “
Compliance Error Calibration for Robot Based on Statistical Properties of Single Joint
,”
J. Mech. Sci. Technol.
,
33
(
4
), pp.
1861
1868
.
24.
Ma
,
L.
,
Bazzoli
,
P.
,
Sammons
,
P. M.
,
Landers
,
R. G.
, and
Bristow
,
D. A.
,
2018
, “
Modeling and Calibration of High-Order Joint-Dependent Kinematic Errors for Industrial Robots
,”
Robot. Comput. Integr. Manuf.
,
50
, pp.
153
167
.
25.
Jiang
,
Z.
,
Huang
,
M.
,
Tang
,
X.
, and
Guo
,
Y.
,
2021
, “
A New Calibration Method for Joint-Dependent Geometric Errors of Industrial Robot Based on Multiple Identification Spaces
,”
Robot. Comput. Integr. Manuf.
,
71
, p.
102175
.
26.
Antonelli
,
G.
,
Chiaverini
,
S.
, and
Fusco
,
G.
,
2005
, “
A Calibration Method for Odometry of Mobile Robots Based on the Least-Squares Technique: Theory and Experimental Validation
,”
IEEE Trans. Robot.
,
21
(
5
), pp.
994
1004
.
27.
Ji
,
Y.
,
Chen
,
W.
,
Zhang
,
J.
,
Li
,
Z.
,
Fang
,
Z.
, and
Yang
,
G.
,
2022
, “
Self-Identification of Cable-Driven Exoskeleton Based on Asynchronous Iterative Method
,”
J. Mech. Robot.
,
14
(
2
), pp.
1
12
.
28.
Maye
,
J.
,
Furgale
,
P.
, and
Siegwart
,
R.
,
2013
, “
Self-Supervised Calibration for Robotic Systems
,”
2013 IEEE Intelligent Vehicles Symposium (IV)
,
Gold Coast, QLD, Australia
,
June 23–26
, pp.
473
480
.
29.
Shen
,
N.
,
Yuan
,
H.
,
Li
,
J.
,
Wang
,
Z.
,
Geng
,
L.
,
Shi
,
H.
, and
Lu
,
N.
,
2022
, “
Efficient Model-Free Calibration of a 5-Degree of Freedom Hybrid Robot
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051011
.
30.
Santolaria
,
J.
,
Conte
,
J.
,
Pueo
,
M.
, and
Javierre
,
C.
,
2014
, “
Rotation Error Modeling and Identification for Robot Kinematic Calibration by Circle Point Method
,”
Metrol. Meas. Syst.
,
21
(
1
), pp.
85
98
.
You do not currently have access to this content.