Abstract

For successful push recovery in response to perturbations, a humanoid robot must select an appropriate stabilizing action. Existing approaches are limited because they are often derived from reduced-order models that ignore system-specific aspects such as swing leg dynamics or kinematic and actuation limits. In this study, the formulation of capturability for whole-body humanoid robots is introduced as a partition-based approach in the augmented center-of-mass (COM)-state space. The 1-step capturable boundary is computed from an optimization-based method that incorporates whole-body system properties with full-order nonlinear system dynamics in the sagittal plane including contact interactions with the ground and conditions for achieving a complete stop after stepping. The 1-step capturable boundary, along with the balanced state boundaries, are used to quantify the relative contributions of different strategies and contacts in maintaining or recovering balance in push recovery. The computed boundaries are also incorporated as explicit criteria into a partition-aware push recovery controller that monitors the robot’s COM state to selectively exploit the ankle, hip, or captured stepping strategies. The push recovery simulation experiments demonstrated the validity of the stability boundaries in fully exploiting a humanoid robot’s balancing capability through appropriate balancing actions in response to perturbations. Overall, the system-specific capturability with the whole-body system properties and dynamics outperformed that derived from a typical reduced-order model.

References

1.
Mummolo
,
C.
,
Mangialardi
,
L.
, and
Kim
,
J. H.
,
2017
, “
Numerical Estimation of Balanced and Falling States for Constrained Legged Systems
,”
J. Nonlinear Sci.
,
27
(
4
), pp.
1291
1323
.
2.
Ghorbani
,
M.
,
Kakavandi
,
F.
, and
Masouleh
,
M. T.
,
2017
, “
An Experimental Study on a Learning-Based Approach for the Push Recovery of NAO Humanoid Robot
,”
Artificial Intelligence and Signal Processing Conference (AISP)
,
Shiraz, Iran
,
Oct. 25–27
, pp.
358
363
.
3.
Yi
,
S. J.
,
Zhang
,
B. T.
,
Hong
,
D.
, and
Lee
,
D. D.
,
2013
, “
Online Learning of Low Dimensional Strategies for High-Level Push Recovery in Bipedal Humanoid Robots
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
1649
1655
.
4.
Kalyanakrishnan
,
S.
, and
Goswami
,
A.
,
2011
, “
Learning to Predict Humanoid Fall
,”
Int. J. Humanoid Rob.
,
8
(
2
), pp.
245
273
.
5.
Hohn
,
O.
, and
Gerth
,
W.
,
2009
, “
Probabilistic Balance Monitoring for Bipedal Robots
,”
Int. J. Rob. Res.
,
28
(
2
), pp.
245
256
.
6.
Choi
,
J. J.
,
Agrawal
,
A.
,
Sreenath
,
K.
,
Tomlin
,
C. J.
, and
Bansal
,
S.
,
2022
, “
Computation of Regions of Attraction for Hybrid Limit Cycles Using Reachability: An Application to Walking Robots
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
4504
4511
.
7.
Ames
,
A. D.
,
Galloway
,
K.
,
Sreenath
,
K.
, and
Grizzle
,
J. W.
,
2014
, “
Rapidly Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics
,”
IEEE Trans. Autom. Control
,
59
(
4
), pp.
876
891
.
8.
Hobbelen
,
D. G.
, and
Wisse
,
M.
,
2007
, “
A Disturbance Rejection Measure for Limit Cycle Walkers: The Gait Sensitivity Norm
,”
IEEE Trans. Rob.
,
23
(
6
), pp.
1213
1224
.
9.
Vukobratović
,
M.
, and
Borovac
,
B.
,
2004
, “
Zero-Moment Point—Thirty Five Years of Its Life
,”
Int. J. Humanoid Rob.
,
1
(
1
), pp.
157
173
.
10.
Hirukawa
,
H.
,
Hattori
,
S.
,
Harada
,
K.
,
Kajita
,
S.
,
Kaneko
,
K.
,
Kanehiro
,
F.
,
Fujiwara
,
K.
, and
Morisawa
,
M.
,
2006
, “
A Universal Stability Criterion of the Foot Contact of Legged Robots-Adios ZMP
,”
Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006
,
Orlando, FL
,
May 15–19
, pp.
1976
1983
.
11.
Kim
,
J. H.
,
Lee
,
J.
, and
Oh
,
Y.
,
2018
, “
A Theoretical Framework for Stability Regions for Standing Balance of Humanoids Based on Their LIPM Treatment
,”
IEEE Trans. Syst. Man, Cybern. Syst.
,
50
(
1
), pp.
1
18
.
12.
Caron
,
S.
,
Pham
,
Q.-C.
, and
Nakamura
,
Y.
,
2017
, “
ZMP Support Areas for Multi-Contact Mobility Under Frictional Constraints
,”
IEEE Trans. Rob.
,
33
(
1
), pp.
67
80
.
13.
Peng
,
W. Z.
,
Song
,
H.
, and
Kim
,
J. H.
,
2021
, “
Stability Region-Based Analysis of Walking and Push Recovery Control
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031005
.
14.
Peng
,
W. Z.
,
Mummolo
,
C.
,
Song
,
H.
, and
Kim
,
J. H.
,
2022
, “
Whole-Body Balance Stability Regions for Multi-Level Momentum and Stepping Strategies
,”
Mech. Mach. Theory
,
174
, p.
104880
.
15.
Firmani
,
F.
, and
Park
,
E. J.
,
2013
, “
Theoretical Analysis of the States of Balance in Bipedal Walking
,”
ASME J. Biomech. Eng.
,
135
(
4
), p.
041003
.
16.
Pratt
,
J. E.
, and
Tedrake
,
R.
,
2006
, “Velocity-Based Stability Margins for Fast Bipedal Walking,”
Fast Motions in Biomechanics and Robotics: Optimization and Feedback Control
,
M.
Diehl
, and
K.
Mombaur
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
299
324
.
17.
Koolen
,
T.
,
De Boer
,
T.
,
Rebula
,
J.
,
Goswami
,
A.
, and
Pratt
,
J.
,
2012
, “
Capturability-Based Analysis and Control of Legged Locomotion, Part 1: Theory and Application to Three Simple Gait Models
,”
Int. J. Rob. Res.
,
31
(
9
), pp.
1094
1113
.
18.
Takenaka
,
T.
,
Matsumoto
,
T.
, and
Yoshiike
,
T.
,
2009
, “
Real Time Motion Generation and Control for Biped Robot—1st Report: Walking Gait Pattern Generation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
, pp.
1084
1091
.
19.
Englsberger
,
J.
,
Ott
,
C.
, and
Albu-Schäffer
,
A.
,
2015
, “
Three-Dimensional Bipedal Walking Control Based on Divergent Component of Motion
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
355
368
.
20.
Hof
,
A. L.
,
2008
, “
The ‘Extrapolated Center of Mass’ Concept Suggests a Simple Control of Balance in Walking
,”
Hum. Mov. Sci.
,
27
(
1
), pp.
112
125
.
21.
Khadiv
,
M.
,
Herzog
,
A.
,
Moosavian
,
S. A. A.
, and
Righetti
,
L.
,
2016
, “
Step Timing Adjustment: A Step Toward Generating Robust Gaits
,”
IEEE/RAS International Conference on Humanoid Robots
,
Cancun, Mexico
,
Nov. 15–17
, pp.
35
42
.
22.
Xinjilefu
,
X.
,
Feng
,
S.
, and
Atkeson
,
C. G.
,
2015
, “
Center of Mass Estimator for Humanoids and Its Application in Modeling Error Compensation, Fall Detection and Prevention
,”
IEEE/RAS International Conference on Humanoid Robots
,
Seoul, South Korea
,
Dec. 3–5
, pp.
67
73
.
23.
Stephens
,
B. J.
, and
Atkeson
,
C. G.
,
2010
, “
Push Recovery by Stepping for Humanoid Robots With Force Controlled Joints
,”
IEEE/RAS International Conference on Humanoid Robots
,
Nashville, TN
,
Dec. 6–8
, pp.
52
59
.
24.
Stephens
,
B.
,
2007
, “
Humanoid Push Recovery
,”
IEEE/RAS International Conference on Humanoid Robots
,
Pittsburgh, PA
,
Nov. 29–Dec. 1
, pp.
589
595
.
25.
Wieber
,
P. B.
,
2002
, “
On the Stability of Walking Systems
,”
Proceedings of the International Workshop on Humanoid and Human Friendly Robotics
,
Tsukuba, Japan
,
Dec. 11–12
.
26.
Zaytsev
,
P.
,
Hasaneini
,
S. J.
, and
Ruina
,
A.
,
2015
, “
Two Steps is Enough: No Need to Plan Far Ahead for Walking Balance
,”
IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30
, pp.
6295
6300
.
27.
Zaytsev
,
P.
,
Wolfslag
,
W.
, and
Ruina
,
A.
,
2018
, “
The Boundaries of Walking Stability: Viability and Controllability of Simple Models
,”
IEEE Trans. Rob.
,
34
(
2
), pp.
336
352
.
28.
Pratt
,
J.
,
Carff
,
J.
,
Drakunov
,
S.
, and
Goswami
,
A.
,
2006
, “
Capture Point: A Step Toward Humanoid Push Recovery
,”
IEEE/RAS International Conference on Humanoid Robots
,
Genova, Italy
,
Dec. 4–6
, pp.
200
207
.
29.
Pratt
,
J.
,
Koolen
,
T.
,
de Boer
,
T.
,
Rebula
,
J.
,
Cotton
,
S.
,
Carff
,
J.
,
Johnson
,
M.
, and
Neuhaus
,
P.
,
2012
, “
Capturability-Based Analysis and Control of Legged Locomotion, Part 2: Application to M2V2, A Lower Body Humanoid
,”
Int. J. Rob. Res.
,
31
(
10
), pp.
1117
1133
.
30.
Griffin
,
R. J.
,
Wiedebach
,
G.
,
Bertrand
,
S.
,
Leonessa
,
A.
, and
Pratt
,
J.
,
2017
, “
Walking Stabilization Using Step Timing and Location Adjustment on the Humanoid Robot, Atlas
,”
IEEE International Conference on Intelligent Robots and Systems
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
667
673
.
31.
Jeong
,
H.
,
Lee
,
I.
,
Oh
,
J.
,
Lee
,
K. K.
, and
Oh
,
J.-H.
,
2019
, “
A Robust Walking Controller Based on Online Optimization of Ankle, Hip, and Stepping Strategies
,”
IEEE Trans. Rob.
,
35
(
6
), pp.
1367
1386
.
32.
Maki
,
B. E.
, and
McIlroy
,
W. E.
,
1997
, “
The Role of Limb Movements in Maintaining Upright Stance: The ‘Change-In-Support’ Strategy
,”
Phys. Ther.
,
77
(
5
), pp.
488
507
.
33.
Lee
,
S. H.
, and
Goswami
,
A.
,
2007
, “
Reaction Mass Pendulum (RMP): An Explicit Model for Centroidal Angular Momentum of Humanoid Robots
,”
IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
, pp.
4667
4672
.
34.
Hofmann
,
A.
,
2006
, “
Robust Execution of Bipedal Walking Tasks From Biomechanical Principles
,”
Ph.D. dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
35.
Williams
,
R. L.
, II
,
2012
, “
Darwin-OP Humanoid Robot Kinematics
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
1187
1196
.
36.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2002
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM J. Optim.
,
12
(
4
), pp.
979
1006
.
37.
Kim
,
J. H.
,
2011
, “
Optimization of Throwing Motion Planning for Whole-Body Humanoid Mechanism: Sidearm and Maximum Distance
,”
Mech. Mach. Theory
,
46
(
4
), pp.
438
453
.
38.
Peng
,
W. Z.
,
Song
,
H.
, and
Kim
,
J. H.
,
2021
, “
Reduced-Order Model With Foot Tipping Allowance for Legged Balancing
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
, p.
V08BT08A011
.
39.
Gamus
,
B.
, and
Or
,
Y.
,
2015
, “
Dynamic Bipedal Walking Under Stick-Slip Transitions
,”
SIAM J. Appl. Dyn. Syst.
,
14
(
2
), pp.
609
642
.
You do not currently have access to this content.