Abstract

Realizing high-performance soft robots is challenging because many existing soft or compliant actuators exhibit limitations like fabrication complexity, high power requirement, slow actuation, and low force generation. Due to their high-force output and power efficiency, compactness, and simplicity in fabrication, twisted string actuators (TSAs) have exhibited strong potential in mechatronic and robotic applications. However, they have had limited uses in soft robotics. Consequently, modeling and control of TSA-driven soft robots have not been sufficiently studied. This article presents the first study on the modeling and control of a TSA-driven soft robotic manipulator. A physics-based model was developed to predict the manipulator’s kinematic motion. An inverse model was derived to realize open-loop control. Models that describe the behavior of TSAs were utilized in a novel way to develop the proposed kinematic and inverse models of the soft robot. The proposed modeling and control approaches were experimentally verified to be effective. For example, the modeling and control errors of the bending angle were 1.60 deg (3.11%) and 2.11 deg (3.68%), respectively.

References

1.
Schmitt
,
F.
,
Piccin
,
O.
,
Barbé
,
L.
, and
Bayle
,
B.
,
2018
, “
Soft Robots Manufacturing: A Review
,”
Front. Rob. AI
,
5
, p.
84
.
2.
Rich
,
S. I.
,
Wood
,
R. J.
, and
Majidi
,
C.
,
2018
, “
Untethered Soft Robotics
,”
Nat. Electron.
,
1
(
2
), p.
102
.
3.
Zhang
,
J.
,
Sheng
,
J.
,
O’Neill
,
C.
,
Walsh
,
C. J.
,
Wood
,
R. J.
,
Ryu
,
J. H.
,
Desai
,
J. P.
, and
Yip
,
M. C.
,
2019
, “
Robotic Artificial Muscles: Current Progress and Future Perspectives for Biomimetic Actuators
,”
IEEE Trans. Rob.
,
35
(
3
), pp.
761
781
.
4.
Mirvakili
,
S. M.
, and
Hunter
,
I. W.
,
2017
, “
Artificial Muscles: Mechanisms, Applications, and Challenges
,”
Adv. Mater.
,
30
(
6
), p.
1704407
.
5.
Sridar
,
S.
,
Poddar
,
S.
,
Tong
,
Y.
,
Polygerinos
,
P.
, and
Zhang
,
W.
,
2020
, “
Towards Untethered Soft Pneumatic Exosuits Using Low-Volume Inflatable Actuator Composites and a Portable Pneumatic Source
,”
IEEE Rob. Automat. Lett.
,
5
(
3
), pp.
4062
4069
.
6.
Laschi
,
C.
,
Mazzolai
,
B.
, and
Cianchetti
,
M.
,
2016
, “
Soft Robotics: Technologies and Systems Pushing the Boundaries of Robot Abilities
,”
Sci. Rob.
,
1
(
1
).
7.
Bombara
,
D.
,
Konda
,
R.
,
Chow
,
E.
, and
Zhang
,
J.
,
2022
, “
Physics-Based Kinematic Modeling of a Twisted String Actuator-Driven Soft Robotic Manipulator
,”
2022 American Control Conference
,
Atlanta, GA
,
June 8–10
, pp.
4365
4370
.
8.
Sun
,
J.
,
Tighe
,
B.
,
Liu
,
Y.
, and
Zhao
,
J.
,
2021
, “
Twisted-and-Coiled Actuators With Free Strokes Enable Soft Robots With Programmable Motions
,”
Soft Rob.
,
8
(
2
), pp.
213
225
.
9.
Kellaris
,
N.
,
Gopaluni Venkata
,
V.
,
Smith
,
G. M.
,
Mitchell
,
S. K.
, and
Keplinger
,
C.
,
2018
, “
Peano-HASEL Actuators: Muscle-Mimetic, Electrohydraulic Transducers That Linearly Contract on Activation
,”
Sci. Rob.
,
3
(
14
).
10.
Rothemund
,
P.
,
Kellaris
,
N.
,
Mitchell
,
S. K.
,
Acome
,
E.
, and
Keplinger
,
C.
,
2021
, “
HASEL Artificial Muscles for a New Generation of Lifelike Robots—Recent Progress and Future Opportunities
,”
Adv. Mater.
,
33
(
19
), p.
217049
.
11.
Chen
,
B.
,
Wang
,
N.
,
Wang
,
R.
,
Zhu
,
B.
,
Zhang
,
X.
,
Sun
,
W.
, and
Chen
,
W.
,
2023
, “
Automatic Design of Dielectric Elastomer-Based Crawling Robots Using Shape and Topology Optimization
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021006
.
12.
Meng
,
L.
,
Kang
,
R.
,
Gan
,
D.
,
Chen
,
G.
,
Chen
,
L.
,
Branson
,
D. T.
, and
Dai
,
J. S.
,
2020
, “
A Mechanically Intelligent Crawling Robot Driven by Shape Memory Alloy and Compliant Bistable Mechanism
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061005
.
13.
Tang
,
X.
,
Li
,
K.
,
Liu
,
Y.
,
Zhou
,
D.
, and
Zhao
,
J.
,
2019
, “
A General Soft Robot Module Driven by Twisted and Coiled Actuators
,”
Smart Mater. Struct.
,
28
(
3
), p.
035019
.
14.
Zhang
,
J.
,
Simeonov
,
A.
, and
Yip
,
M. C.
,
2018
, “
Three-Dimensional Hysteresis Compensation Enhances Accuracy of Robotic Artificial Muscles
,”
Smart Mater. Struct.
,
27
(
3
), p.
035002
.
15.
Chu
,
W. S.
,
Lee
,
K. T.
,
Song
,
S. H.
,
Han
,
M. W.
,
Lee
,
J. Y.
,
Kim
,
H. S.
,
Kim
,
M. S.
,
Park
,
Y. J.
,
Cho
,
K. J.
, and
Ahn
,
S. H.
,
2012
, “
Review of Biomimetic Underwater Robots Using Smart Actuators
,”
Int. J. Precis. Eng. Manuf.
,
13
(
7
), pp.
1281
1292
.
16.
Bombara
,
D.
,
Coulter
,
R.
,
Konda
,
R.
, and
Zhang
,
J.
,
2021
, “
A Twisted String Actuator-Driven Soft Robotic Manipulator
,”
IFAC-PapersOnLine
,
54
(
20
), pp.
141
146
, Modeling, Estimation and Control Conference MECC 2021.
17.
Konda
,
R.
,
Bombara
,
D.
,
Swanbeck
,
S.
, and
Zhang
,
J.
,
2022
, “
Anthropomorphic Twisted String-Actuated Soft Robotic Gripper With Tendon-Based Stiffening
,”
IEEE Trans. Rob.
,
39
(
2
), pp.
1178
1195
.
18.
Pawlowski
,
B.
,
Sun
,
J.
,
Xu
,
J.
,
Liu
,
Y.
, and
Zhao
,
J.
,
2019
, “
Modeling of Soft Robots Actuated by Twisted-and-Coiled Actuators
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
5
15
.
19.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
.
20.
Park
,
I. W.
, and
SunSpiral
,
V.
,
2014
, “
Impedance Controlled Twisted String Actuators for Tensegrity Robots
,”
2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)
,
Gyeonggi-do, South Korea
,
Oct. 22–25
, pp.
1331
1338
.
21.
Shin
,
Y. J.
,
Lee
,
H. J.
,
Kim
,
K.-S.
, and
Kim
,
S.
,
2012
, “
A Robot Finger Design Using a Dual-Mode Twisting Mechanism to Achieve High-Speed Motion and Large Grasping Force
,”
IEEE Trans. Rob.
,
28
(
6
), pp.
1398
1405
.
22.
Tsabedze
,
T.
,
Hartman
,
E.
, and
Zhang
,
J.
,
2021
, “
A Compact, Compliant, and Biomimetic Robotic Assistive Glove Driven by Twisted String Actuators
,”
Int. J. Intell. Rob. Appl.
,
5
(
3
), pp.
381
394
.
23.
Gaponov
,
I.
,
Popov
,
D.
, and
Ryu
,
J. H.
,
2014
, “
Twisted String Actuation Systems: A Study of the Mathematical Model and a Comparison of Twisted Strings
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1331
1342
.
24.
Helps
,
T.
,
Taghavi
,
M.
,
Wang
,
S.
, and
Rossiter
,
J.
,
2020
, “
Twisted Rubber Variable-Stiffness Artificial Muscles
,”
Soft Rob.
,
7
(
3
), pp.
386
395
.
25.
George Thuruthel
,
T.
,
Renda
,
F.
, and
Iida
,
F.
,
2020
, “
First-Order Dynamic Modeling and Control of Soft Robots
,”
Front. Rob. AI
,
7
, pp.
1
14
.
26.
Xavier
,
M. S.
,
Fleming
,
A. J.
, and
Yong
,
Y. K.
,
2021
, “
Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments
,”
Adv. Intell. Syst.
,
3
(
2
), p.
2000187
.
27.
Till
,
J.
,
Aloi
,
V.
, and
Rucker
,
C.
,
2019
, “
Real-Time Dynamics of Soft and Continuum Robots Based on Cosserat Rod Models
,”
Int. J. Rob. Res.
,
38
(
6
), pp.
723
746
.
28.
Sedal
,
A.
,
Bruder
,
D.
,
Bishop-Moser
,
J.
,
Vasudevan
,
R.
, and
Kota
,
S.
,
2018
, “
A Continuum Model for Fiber-Reinforced Soft Robot Actuators
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
024501
.
29.
Rao
,
P.
,
Peyron
,
Q.
,
Lilge
,
S.
, and
Burgner-Kahrs
,
J.
,
2021
, “
How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance
,”
Front. Rob. AI
,
7
, pp.
1
20
.
30.
Gaponov
,
I.
,
Popov
,
D.
,
Lee
,
S. J.
, and
Ryu
,
J.-H.
,
2017
, “
Auxilio: A Portable Cable-Driven Exosuit for Upper Extremity Assistance
,”
Int. J. Control Autom. Syst.
,
15
(
1
), pp.
73
84
.
31.
Moradi Dalvand
,
M.
,
Nahavandi
,
S.
, and
Howe
,
R. D.
,
2022
, “
General Forward Kinematics for Tendon-Driven Continuum Robots
,”
IEEE Access
,
10
, pp.
60330
60340
.
32.
San-Millan Rodriguez
,
A.
,
Hosseini
,
M.
, and
Paik
,
J.
,
2021
, “
A Hybrid Control Strategy for Force and Precise End Effector Positioning of a Twisted String Actuator
,”
IEEE/ASME Trans. Mechatron.
,
26
(
5
), pp.
2791
2802
.
33.
Huang
,
X.
,
Zou
,
J.
, and
Gu
,
G.
,
2021
, “
Kinematic Modeling and Control of Variable Curvature Soft Continuum Robots
,”
IEEE/ASME Trans. Mechatron.
,
26
(
6
), pp.
3175
3185
.
34.
Wang
,
N.
,
Chen
,
B.
,
Ge
,
X.
,
Zhang
,
X.
, and
Chen
,
W.
,
2021
, “
Design, Kinematics, and Application of Axially and Radially Expandable Modular Soft Pneumatic Actuators
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021019
.
35.
Shisheie
,
R.
,
Jiang
,
L.
,
Banta
,
L.
, and
Cheng
,
M.
,
2015
, “
Modeling and Control of a Bidirectional Twisted-String Actuation for an Upper Arm Robotic Device
,”
2015 American Control Conference (ACC)
,
Chicago, IL
,
July 1–3
, pp.
5794
5799
.
36.
Popov
,
D.
,
Gaponov
,
I.
, and
Ryu
,
J.
,
2013
, “
Bidirectional Elbow Exoskeleton Based on Twisted-String Actuators
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
5853
5858
.
37.
Lee
,
D.
,
Kim
,
D. H.
,
Che
,
C. H.
,
In
,
J. B.
, and
Shin
,
D.
,
2020
, “
Highly Durable Bidirectional Joint With Twisted String Actuators and Variable Radius Pulley
,”
IEEE/ASME Trans. Mechatron.
,
25
(
1
), pp.
360
370
.
38.
Lee
,
D.
,
Kim
,
S.
,
Park
,
H.-J.
,
Kim
,
S.
, and
Shin
,
D.
,
2022
, “
A Spine Assistive Robot With a Routed Twisted String Actuator and a Flat-Back Alleviation Mechanism for Lumbar-Degenerative Flat Back
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
5185
5196
.
39.
Palli
,
G.
,
Natale
,
C.
,
May
,
C.
,
Melchiorri
,
C.
, and
Wurtz
,
T.
,
2013
, “
Modeling and Control of the Twisted String Actuation System
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
664
673
.
40.
Hannan
,
M. W.
, and
Walker
,
I. D.
,
2003
, “
Kinematics and the Implementation of an Elephant’s Trunk Manipulator and Other Continuum Style Robots
,”
J. Rob. Syst.
,
20
(
2
), pp.
45
63
.
41.
Lee
,
H.
,
Choi
,
H.
, and
Park
,
S.
,
2019
, “
Accurate Modeling and Nonlinearity Compensation in the Speed Mode of a Twisted String Actuator
,”
Mech. Mach. Theory
,
137
, pp.
53
66
.
42.
Nedelchev
,
S.
,
Gaponov
,
I.
, and
Ryu
,
J.-H.
,
2020
, “
Accurate Dynamic Modeling of Twisted String Actuators Accounting for String Compliance and Friction
,”
IEEE Rob. Automat. Lett.
,
5
(
2
), pp.
3438
3443
.
43.
Savitzky
,
A.
, and
Golay
,
M. J. E.
,
1964
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures.
,”
Anal. Chem.
,
36
(
8
), pp.
1627
1639
.
44.
Palli
,
G.
,
Hosseini
,
M.
, and
Melchiorri
,
C.
,
2016
, “
Twisted String Actuation With Sliding Surfaces
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
260
265
.
45.
Suthar
,
B.
,
Usman
,
M.
,
Seong
,
H.
,
Gaponov
,
I.
, and
Ryu
,
J.-H.
,
2018
, “
Preliminary Study of Twisted String Actuation Through a Conduit Toward Soft and Wearable Actuation
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
,
May 21–25
, pp.
2260
2265
.
46.
Bombara
,
D.
,
Konda
,
R.
, and
Zhang
,
J.
,
2021
, “
Experimental Characterization and Modeling of the Self-Sensing Property in Compliant Twisted String Actuators
,”
IEEE Rob. Automat. Lett.
,
6
(
2
), pp.
974
981
.
You do not currently have access to this content.