Abstract

Owing to the advantages of safety and reproducibility, remote center of motion (RCM) mechanisms are widely adopted in lumbar puncture (LP) procedures to guide the insertion angle and depth of the end effector. However, the proximal-actuated pattern in existing RCM mechanisms occupies a large space near the end effector, which obstructs the visual field and increases the system inertia. In this work, a base-actuated three-rhombus configured RCM mechanism for LP operation is first proposed, where the symmetric three-rhombus scheme is designed for motion transmission. As a result, the rotational and translational motions of the needle are respectively realized through the homodromous and heterodromous actuation of the two base-mounted motors. Kinematic models are established to analyze the manipulability, singularity, and workspace of the RCM mechanism theoretically. The parameter optimization procedure is provided to minimize the footprint of the RCM mechanism. Experimental results show that the mechanism reaches an insertion angle from −29.2 deg to 29.2 deg, a maximum insertion depth of 60.02 mm, and a footprint of 4.98 × 104 mm2. The relative error of the RCM point is 1.1 mm.

References

1.
Engelborghs
,
S.
,
Niemantsverdriet
,
E.
,
Struyfs
,
H.
,
Blennow
,
K.
,
Brouns
,
R.
,
Comabella
,
M.
,
Dujmovic
,
I.
, et al.,
2017
, “
Consensus Guidelines for Lumbar Puncture in Patients With Neurological Diseases
,”
Alzheimer’s Dementia: Diagn., Assess. Dis. Monit.
,
8
, pp.
111
126
.
2.
Rizk
,
M. S.
,
Zeeni
,
C. A.
,
Bouez
,
J. N.
,
Bteich
,
N. J.
,
Sayyid
,
S. K.
,
Alfahel
,
W. S.
, and
Siddik-Sayyid
,
S. M.
,
2019
, “
Preprocedural Ultrasound Versus Landmark Techniques for Spinal Anesthesia Performed by Novice Residents in Elderly: A Randomized Controlled Trial
,”
BMC Anesthesiol.
,
19
(
1
), p.
208
.
3.
Ambastha
,
S.
,
Umesh
,
S.
,
Dabir
,
S.
, and
Asokan
,
S.
,
2018
, “
Comparison of Force Required for Lumbar Puncture With Different Gauges of Spinal Needle Using Fiber Bragg Grating Force Device
,”
IEEE Sens. J.
,
18
(
19
), pp.
8028
8033
.
4.
Bolea
,
J.
,
Lázaro
,
J.
,
Gil
,
E.
,
Rovira
,
E.
,
Remartínez
,
J. M.
,
Laguna
,
P.
,
Pueyo
,
E.
,
Navarro
,
A.
, and
Bailón
,
R.
,
2017
, “
Pulse Rate and Transit Time Analysis to Predict Hypotension Events After Spinal Anesthesia During Programmed Cesarean Labor
,”
Ann. Biomed. Eng.
,
45
(
9
), pp.
2253
2263
.
5.
Khadem
,
M.
,
Rossa
,
C.
,
Usmani
,
N.
,
Sloboda
,
R. S.
, and
Tavakoli
,
M.
,
2016
, “
A Two-Body Rigid/Flexible Model of Needle Steering Dynamics in Soft Tissue
,”
IEEE/ASME Trans. Mechatron.
,
21
(
5
), pp.
2352
2364
.
6.
Adagolodjo
,
Y.
,
Goffin
,
L.
,
De Mathelin
,
M.
, and
Courtecuisse
,
H.
,
2019
, “
Robotic Insertion of Flexible Needle in Deformable Structures Using Inverse Finite-Element Simulation
,”
IEEE Trans. Rob.
,
35
(
3
), pp.
697
708
.
7.
Garg
,
B.
,
Mehta
,
N.
, and
Malhotra
,
R.
,
2020
, “
Robotic Spine Surgery: Ushering in a New Era
,”
J. Clin. Orthop. Trauma
,
11
(
5
), pp.
753
760
.
8.
Chen
,
G.
,
Wang
,
J.
,
Wang
,
H.
,
Chen
,
C.
,
Parenti-Castelli
,
V.
, and
Angeles
,
J.
,
2020
, “
Design and Validation of a Spatial Two-Limb 3R1T Parallel Manipulator With Remote Center-of-Motion
,”
Mech. Mach. Theory
,
149
, p.
103807
.
9.
Kim
,
C.-K.
,
Chung
,
D. G.
,
Hwang
,
M.
,
Cheon
,
B.
,
Kim
,
H.
,
Kim
,
J.
, and
Kwon
,
D.-S.
,
2019
, “
Three-Degrees-of-Freedom Passive Gravity Compensation Mechanism Applicable to Robotic Arm With Remote Center of Motion for Minimally Invasive Surgery
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3473
3480
.
10.
Cui
,
Z.
,
Li
,
W.
,
Zhang
,
X.
,
Chiu
,
P. W. Y.
, and
Li
,
Z.
,
2021
, “
Accelerated Dual Neural Network Controller for Visual Servoing of Flexible Endoscopic Robot With Tracking Error, Joint Motion, and RCM Constraints
,”
IEEE Trans. Ind. Electron.
,
69
(
9
), pp.
9246
9257
.
11.
Long
,
H.
,
Yang
,
Y.
,
Jingjing
,
X.
, and
Peng
,
S.
,
2016
, “
Type Synthesis of 1R1T Remote Center of Motion Mechanisms Based on Pantograph Mechanisms
,”
ASME J. Mech. Des.
,
138
(
1
), p.
014501
.
12.
Wilson
,
J. T.
,
Gerber
,
M. J.
,
Prince
,
S. W.
,
Chen
,
C.-W.
,
Schwartz
,
S. D.
,
Hubschman
,
J.-P.
, and
Tsao
,
T.-C.
,
2018
, “
Intraocular Robotic Interventional Surgical System (IRISS): Mechanical Design, Evaluation, and Master-Slave Manipulation
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
14
(
1
), p.
e1842
.
13.
Wang
,
Z.
,
Zhang
,
W.
, and
Ding
,
X.
,
2020
, “
Design and Analysis of a Novel Mechanism With a Two-DOF Remote Centre of Motion
,”
Mech. Mach. Theory
,
153
, p.
103990
.
14.
Essomba
,
T.
, and
Vu
,
L. N.
,
2018
, “
Kinematic Analysis of a New Five-Bar Spherical Decoupled Mechanism With Two-Degrees of Freedom Remote Center of Motion
,”
Mech. Mach. Theory
,
119
, pp.
184
197
.
15.
Ballantyne
,
G. H.
, and
Moll
,
F.
,
2003
, “
The Da Vinci Telerobotic Surgical System: The Virtual Operative Field and Telepresence Surgery
,”
Surg. Clin.
,
83
(
6
), pp.
1293
1304
.
16.
Shim
,
S.
,
Ji
,
D.
,
Lee
,
S.
,
Choi
,
H.
, and
Hong
,
J.
,
2020
, “
Compact Bone Surgery Robot With a High-Resolution and High-Rigidity Remote Center of Motion Mechanism
,”
IEEE Trans. Biomed. Eng.
,
67
(
9
), pp.
2497
2506
.
17.
Afshar
,
M.
,
Carriere
,
J.
,
Meyer
,
T.
,
Sloboda
,
R.
,
Husain
,
S.
,
Usmani
,
N.
, and
Tavakoli
,
M.
,
2020
, “
Optimal Design of A Novel Spherical Scissor Linkage Remote Center of Motion Mechanism for Medical Robotics
,”
In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 24, 2020–Jan. 24
, 2021, IEEE, pp.
6459
6465
.
18.
Chen
,
G.
,
Xun
,
Y.
,
Chai
,
Y.
,
Yao
,
S.
,
Chen
,
C.
, and
Wang
,
H.
,
2021
, “
Design and Validation of a Novel Planar 2R1T Remote Center-of-Motion Mechanism Composing of Dual-Triangular and Straight-Line Linkages
,”
ASME J. Mech. Rob.
, pp.
1
11
.
19.
He
,
Y.
,
Zhang
,
P.
,
Jin
,
H.
,
Hu
,
Y.
, and
Zhang
,
J.
,
2016
, “
Type Synthesis for Remote Center of Motion Mechanisms Based on Coupled Motion of Two Degrees-of-Freedom
,”
ASME J. Mech. Des.
,
138
(
12
), p.
122301
.
20.
Li
,
J.
,
Zhang
,
G.
,
Xing
,
Y.
,
Liu
,
H.
, and
Wang
,
S.
,
2014
, “
A Class of 2-Degree-of-Freedom Planar Remote Center-of-Motion Mechanisms Based on Virtual Parallelograms
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031014
.
21.
Huang
,
L.
,
Yin
,
L.
,
Liu
,
B.
, and
Yang
,
Y.
,
2021
, “
Design and Error Evaluation of Planar 2DOF Remote Center of Motion Mechanisms With Cable Transmissions
,”
ASME J. Mech. Des.
,
143
(
1
), p.
013301
.
22.
Liu
,
S.
,
Chen
,
B.
,
Caro
,
S.
,
Briot
,
S.
,
Harewood
,
L.
, and
Chen
,
C.
,
2016
, “
A Cable Linkage With Remote Centre of Motion
,”
Mech. Mach. Theory
,
105
, pp.
583
605
.
23.
Ye
,
W.
,
Zhang
,
B.
, and
Li
,
Q.
,
2020
, “
Design of a 1R1T Planar Mechanism With Remote Center of Motion
,”
Mech. Mach. Theory
,
149
, p.
103845
.
24.
Chen
,
C.-W.
,
Chen
,
H.-C.
,
Yang
,
H.-Y.
,
Zeng
,
X.-Y.
,
Wu
,
X.-H.
, and
Chen
,
P.-C.
,
2022
, “
Intraocular Robotic Interventional System (IORBIS): Mechanical Design for Distally-Actuated Instrument Insertion and Automatic Tool Change
,”
Mech. Mach. Theory
,
167
, p.
104568
.
25.
Suzuki
,
H.
, and
Wood
,
R. J.
,
2020
, “
Origami-Inspired Miniature Manipulator for Teleoperated Microsurgery
,”
Nat. Mach. Intell.
,
2
(
8
), pp.
437
446
.
26.
Holton
,
L. L. H.
,
2000
,
Development of a Haptic Feedback Model for Computer Simulation of the Epidural Anesthesia Needle Insertion Procedure, The Ohio State University, Columbus, OH
.
27.
Fati
,
N.
,
Fitiwi
,
G.
,
Aynalem
,
A.
, and
Muche
,
A.
,
2021
, “
Depth of Spinal Needle Insertion and Its Associated Factors Among Patients Who Underwent Surgery Under Spinal Anesthesia
,”
Transl. Res. Anat.
,
25
, p.
100143
.
You do not currently have access to this content.