Abstract

Multi-loop coupling mechanisms (MCMs) have been widely used in aerospace engineering, architectural design, and outdoor activities. This paper proposes a general method for analyzing the singularities of MCMs using geometric algebra. The limbs of MCM can be divided into basic limbs and coupling limbs. For independent basic limbs, constraint space can be obtained directly by outer product and dual operator. For basic limbs coupled with closed-loops in an MCM, the modified constraint space can be obtained by analyzing each coupled single closed-loop. The singular polynomial of the MCM is obtained from the join of all the basic limb constraint space, which can be calculated by the outer operator. The singular polynomial is analyzed to obtain all singular configurations in the global coordinate system. The proposed method has the advantages of simple computation and clear physical significance. Furthermore, three MCM examples of different couple types are used to demonstrate the correctness of this method.

References

1.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
A New Concept for Solid Surface Deployable Antennas
,”
Acta Astronaut.
,
38
(
2
), pp.
103
113
.
2.
Wang
,
Z.
,
Zhang
,
W. X.
, and
Ding
,
X. L.
,
2020
, “
Design and Analysis of a Novel Mechanism With a Two-DOF Remote Centre of Motion
,”
Mech. Mach. Theory
,
153
, p.
103990
.
3.
Gantes
,
C. J.
,
Connor
,
J. J.
,
Logcher
,
R. D.
, and
Rosenfeld
,
Y.
,
1989
, “
Structural Analysis and Design of Deployable Structures
,”
Comput. Struct.
,
32
(
3–4
), pp.
661
669
.
4.
Cheng
,
P.
,
Ding
,
H. F.
,
Cao
,
W. A.
,
Gosselin
,
C. M.
, and
Geng
,
M. C.
,
2021
, “
A Novel Family of Umbrella-Shaped Deployable Mechanisms Constructed by Multi-layer and Multi-loop Spatial Linkage Units
,”
Mech. Mach. Theory
,
161
, p.
104169
.
5.
Kang
,
X.
,
Lei
,
H.
, and
Li
,
B.
,
2022
, “
Multiple Bifurcated Reconfiguration of Double-Loop Metamorphic Mechanisms With Prismatic Joints
,”
Mech. Mach. Theory
,
178
, p.
105081
.
6.
Tian
,
Y. B.
,
Kong
,
X. W.
,
Xu
,
K.
, and
Ding
,
X. L.
,
2021
, “
Multi-loop Rover: A Kind of Modular Rolling Robot Constructed by Multi-loop Linkages
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011012
.
7.
Basu
,
D.
, and
Ghosal
,
A.
,
1997
, “
Singularity Analysis of Platform-Type Multi-loop Spatial Mechanisms
,”
Mech. Mach. Theory
,
32
(
3
), pp.
375
389
.
8.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1994
, “
Singularity Analysis of Mechanisms and Robots Via a Motion-Space Model of the Instantaneous Kinematics
,”
Proceedings of the 1994 IEEE International Conference on Robotics and Automation
,
San Diego, CA
,
May 8–13
, pp.
980
985
.
9.
Nenchev
,
D. N.
, and
Uchiyama
,
M.
,
1998
, “
PARA-Arm: A Five-Bar Parallel Manipulator With Singularity-Perturbed Design
,”
Mech. Mach. Theory
,
33
(
5
), pp.
453
462
.
10.
Yao
,
H. J.
,
2021
,
Singularity Analysis and Evaluation of Parallel Manipulators Based on Geometric Algebra (in Chinese)
,
Zhejiang Sci-Tech University
,
Hangzhou, China
.
11.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
12.
Sefrioui
,
J.
, and
Gosselin
,
C. M.
,
1992
, “
Singularity Analysis and Representation of Planar Parallel Manipulators
,”
Rob. Auton. Syst.
,
10
(
4
), pp.
209
224
.
13.
Sefrioui
,
J.
, and
Gosselin
,
C. M.
,
1995
, “
On the Quadratic Nature of the Singularity Curves of Planar Three-Degree-of-Freedom Parallel Manipulators
,”
Mech. Mach. Theory
,
30
(
4
), pp.
533
551
.
14.
Chai
,
X. X.
,
Xiang
,
J. N.
, and
Li
,
Q. C.
,
2015
, “
Singularity Analysis of a 2-UPR-RPU Parallel Mechanism
,”
J. Mech. Eng.
,
51
(
13
), pp.
144
151
.
15.
Kong
,
X. W.
, and
Gosselin
,
C. M.
,
2001
, “
Uncertainty Singularity Analysis of Parallel Manipulators Based on the Instability Analysis of Structures
,”
Int. J. Rob. Res.
,
20
(
11
), pp.
847
856
.
16.
Merlet
,
J. P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Rob. Res.
,
8
(
5
), pp.
45
56
.
17.
Wen
,
K. F.
,
Nguyen
,
T. S.
,
Harton
,
D.
,
Laliberté
,
T.
, and
Gosselin
,
C. M.
,
2020
, “
A Backdrivable Kinematically Redundant (6 + 3)-Degree-of-Freedom Hybrid Parallel Robot for Intuitive Sensorless Physical Human–Robot Interaction
,”
IEEE Trans. Rob.
,
37
(
4
), pp.
1222
1238
.
18.
Huang
,
Z.
, and
Qu
,
Y. Y.
,
1989
, “
Special Configuration Analysis of Spatial Parallel Manipulators (in Chinese)
,”
J. Northeast Inst. Heavy Mach.
,
13
(
2
), pp.
1
6
.
19.
Huang
,
Z.
,
Chen
,
L. H.
, and
Li
,
Y. W.
,
2003
, “
The Singularity Principle and Property of Stewart Parallel Manipulator
,”
J. Rob. Syst.
,
20
(
4
), pp.
163
176
.
20.
Pendar
,
H.
,
Mahnama
,
M.
, and
Zohoor
,
H.
,
2011
, “
Singularity Analysis of Parallel Manipulators Using Constraint Plane Method
,”
Mech. Mach. Theory
,
46
(
1
), pp.
33
43
.
21.
Amine
,
S.
,
Masouleh
,
M. T.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
C. M.
,
2012
, “
Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011011
.
22.
Amine
,
S.
,
Masouleh
,
M. T.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
C. M.
,
2011
, “
Singularity Analysis of the 4-RUU Parallel Manipulator Using Grassmann-Cayley Algebra
,”
Trans. Canad. Soc. Mech. Eng.
,
35
(
5
), pp.
515
528
.
23.
Zoppi
,
M.
,
Zlatanov
,
D.
, and
Molfino
,
R.
,
2006
, “
On the Velocity Analysis of Interconnected Chains Mechanisms
,”
Mech. Mach. Theory
,
41
(
11
), pp.
1346
1358
.
24.
Liu
,
X.
,
Zhao
,
J. S.
, and
Feng
,
Z. J.
,
2016
, “
Instantaneous Motion and Constraint Analysis of Bennett Linkage
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
230
(
3
), pp.
379
391
.
25.
Liu
,
W. L.
,
2018
,
Force Mechanism Analysis of Spatial Multi-loop Mechanisms With Overconstrains (in Chinese)
,
Yanshan University
,
Qinhuangdao, China
.
26.
Li
,
C. Y.
,
Angeles
,
J.
,
Guo
,
H. W.
,
Yan
,
H. Y.
,
Tang
,
D. W.
,
Liu
,
R. Q.
, and
Deng
,
Z. Q.
,
2021
, “
Mobility and Singularity Analyses of a Symmetric Multi-loop Mechanism for Space Applications
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
235
(
22
), pp.
6205
6218
.
27.
Li
,
C. Y.
,
Guo
,
H. W.
,
Tang
,
D. W.
,
Liu
,
R. Q.
,
Deng
,
Z. Q.
,
Song
,
X. K.
, and
Zahin
,
S. I.
,
2019
, “
Cell Division Method for Mobility Analysis of Multi-loop Mechanisms
,”
Mech. Mach. Theory
,
141
, pp.
67
94
.
28.
Xu
,
Y. D.
,
Chen
,
Y.
,
Liu
,
W. L.
,
Ma
,
X. F.
,
Yao
,
J. T.
, and
Zhao
,
Y. S.
,
2020
, “
Degree of Freedom and Dynamic Analysis of the Multi-loop Coupled Passive-Input Overconstrained Deployable Tetrahedral Mechanisms for Truss Antennas
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011010
.
29.
Li
,
C. Y.
,
Guo
,
H. W.
,
Tang
,
D. W.
,
Yan
,
H. Y.
,
Liu
,
R. Q.
, and
Deng
,
Z. Q.
,
2020
, “
A 3-R(SRS)RP Multi-loop Mechanism for Space Manipulation: Design, Kinematics, Singularity, and Workspace
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011001
.
30.
Wang
,
J. Y.
, and
Kong
,
X. W.
,
2018
, “
Deployable Mechanisms Constructed by Connecting Orthogonal Bricard Linkages, 8R or 10R Single-Loop Linkages Using S Joints
,”
Mech. Mach. Theory
,
120
, pp.
178
191
.
31.
Chai
,
X. X.
, and
Li
,
Q. C.
,
2017
, “
Analytical Mobility Analysis of Bennett Linkage Using Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
27
, pp.
2083
2095
.
32.
Li
,
Q. C.
,
Xu
,
L. M.
,
Chen
,
Q. H.
, and
Chai
,
X. X.
,
2019
, “
Analytical Elastostatic Stiffness Modeling of Overconstrained Parallel Manipulators Using Geometric Algebra and Strain Energy
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031007
.
33.
Xu
,
L. M.
,
Chai
,
X. X.
,
Li
,
Q. C.
,
Zhang
,
L. A.
, and
Ye
,
W.
,
2019
, “
Design and Experimental Investigation of a New 2R1T Overconstrained Parallel Kinematic Machine With Actuation Redundancy
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031016
.
34.
Tanev
,
T. K.
,
2008
,
Geometric Algebra Approach to Singularity of Parallel Manipulators With Limited Mobility, Advances in Robot Kinematics: Analysis and Design
,
Springer
,
Dordrecht, The Netherlands
, pp.
39
48
.
35.
Tanev
,
T. K.
,
2016
,
Singularity Analysis of a Novel Minimally-Invasive-Surgery Hybrid Robot Using Geometric Algebra, New Trends in Medical and Service Robots
,
Springer
,
Cham, Switzerland
, pp.
15
29
.
36.
Li
,
Q. C.
,
Chai
,
X. X.
, and
Xiang
,
J. N.
,
2016
, “
Mobility Analysis of Limited-Degrees-of-Freedom Parallel Mechanisms in the Framework of Geometric Algebra
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041005
.
37.
Li
,
Q. C.
,
Xiang
,
J. N.
, and
Chai
,
X. X.
,
2015
, “
Singularity Analysis of a 3-RPS Parallel Manipulator Using Geometric Algebra
,”
Chin. J. Mech. Eng.
,
28
(
6
), pp.
1204
1212
.
38.
Yao
,
H. J.
,
Chen
,
Q. H.
,
Chai
,
X. X.
, and
Li
,
Q. C.
,
2017
, “
Singularity Analysis of 3-RPR Parallel Manipulators Using Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
27
, pp.
2097
2113
.
39.
Yao
,
H. J.
,
Li
,
Q. C.
,
Chen
,
Q. H.
, and
Chai
,
X. X.
,
2018
, “
Measuring the Closeness to Singularities of a Planar Parallel Manipulator Using Geometric Algebra
,”
Appl. Math. Model.
,
57
, pp.
192
205
.
40.
Guo
,
J. Q.
,
Li
,
Q. C.
, and
Chai
,
X. X.
,
2024
, “
Mobility Analysis of Multi-loop Coupling Mechanisms Using Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
34
, p.
24
.
41.
Chai
,
X. X.
,
Xiao
,
Y.
,
Li
,
Q. C.
, and
Xu
,
L. M.
,
2024
, “
Actuation Selection for Multi-loop Coupling Mechanisms Using Geometric Algebra
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
238
(
14
), pp.
6993
7014
.
42.
Li
,
Q. C.
,
Chai
,
X. X.
, and
Yao
,
H. J.
,
2019
,
Geometric Algebraic Approach to the Calculation of Degrees of Freedom and Singularity Analysis of Parallel Mechanisms (in Chinese)
,
Science Press
,
Beijing, China
.
43.
Hestenes
,
D.
,
2012
,
New Foundations for Classical Mechanics
,
Springer
,
Dordrecht, The Netherlands
.
44.
Selig
,
J. M.
,
2013
,
Geometrical Methods in Robotics
,
Springer
,
New York
.
45.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
,
Springer
,
New York
.
46.
Li
,
Z. J.
,
2015
,
Research on Solid-Surface Deployable Solar Concentrator (in Chinese)
,
Harbin Institute of Technology
,
Harbin, China
.
47.
Yang
,
Y.
, and
Ding
,
X. L.
,
2011
, “
Research on the Design of Extension arm Based on Spatial Polyhedral Centripetal Mechanism (in Chinese)
,”
J. Mech. Eng.
,
47
(
5
), pp.
26
34
.
You do not currently have access to this content.