Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Overconstrained parallel manipulators (PMs) without actuation redundancy have been widely used in various applications, such as the parallel module of the Exechon robot for workpiece machining. However, existing methods are inadequate for describing the motion/force constraint performance of nonredundant and overconstrained PMs (NOPMs) because they do not reasonably consider the influence of the overconstrained structure. This performance is crucial for evaluating the capability to resist external loads, which is of great significance for applications requiring high stiffness and precision. To address this issue, this paper proposes a new evaluation method for the motion/force constrainability of NOPMs. First, based on the four wrench and twist systems of limbs, the output constraint performances of all the single-degree-of-freedom (DOF) mechanisms under different cases can be obtained. These single-DOF mechanisms are constructed by selectively “losing” some constraint wrench screws and “locking” all the transmission wrench screws of the original overconstrained PM, which is the key step in the establishment of this method and achieved using the ergodic method. Then, the output and input constraint performance indices in a certain configuration can be calculated, followed by the definition of a local constraint index to evaluate the motion/force constrainability of the NOPM. Notably, all the proposed indices are characterized by coordinate independence. Finally, two PMs and their corresponding overconstrained structures are simulated to demonstrate the correctness of the proposed evaluation method. The evaluation strategy can also be used for the optimal design of the NOPMs in the future.

References

1.
Xu
,
L. M.
,
Chai
,
X. X.
, and
Ding
,
Y.
,
2024
, “
Design of a 2RRU-RRS Parallel Kinematic Mechanism for an Inner-Cavity Machining Hybrid Robot
,”
ASME J. Mech. Rob.
,
16
(
5
), p.
054501
.
2.
Xu
,
L. M.
,
Ye
,
W.
, and
Li
,
Q. C.
,
2022
, “
Design, Analysis, and Experiment of a New Parallel Manipulator With Two Rotational and One Translational Motion
,”
Mech. Mach. Theory
,
177
, p.
105064
.
3.
Saafi
,
H.
,
Laribi
,
M. A.
, and
Zeghloul
,
S.
,
2017
, “
Optimal Torque Distribution for a Redundant 3-RRR Spherical Parallel Manipulator Used as a Haptic Medical Device
,”
Rob. Auton. Syst.
,
89
, pp.
40
50
.
4.
Hunt
,
J.
, and
Lee
,
H.
,
2018
, “
A New Parallel Actuated Architecture for Exoskeleton Applications Involving Multiple Degree-of-Freedom Biological Joints
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051017
.
5.
Pouliot
,
N. A.
,
Gosselin
,
C. M.
, and
Nahon
,
M. A.
,
2012
, “
Motion Simulation Capabilities of Three-Degree-of-Freedom Flight Simulators
,”
J. Aircr.
,
35
(
1
), pp.
9
17
.
6.
Belzile
,
B.
,
Eskandary
,
P. K.
, and
Angeles
,
J.
,
2020
, “
Workspace Determination and Feedback Control of a Pick-and-Place Parallel Robot: Analysis and Experiments
,”
IEEE Robot. Autom. Lett.
,
5
(
1
), pp.
40
47
.
7.
Huang
,
L.
,
Yin
,
L. R.
,
Liu
,
B.
, and
Yang
,
Y.
,
2021
, “
Design and Error Evaluation of Planar 2DOF Remote Center of Motion Mechanisms With Cable Transmissions
,”
ASME J. Mech. Des.
,
143
(
1
), p.
013301
.
8.
Dong
,
C.
,
Liu
,
H.
,
Xiao
,
J.
, and
Huang
,
T.
,
2021
, “
Dynamic Modeling and Design of a 5-DOF Hybrid Robot for Machining
,”
Mech. Mach. Theory
,
165
, p.
104438
.
9.
Jalgaonkar
,
N.
,
Kim
,
A.
, and
Awtar
,
S.
,
2021
, “
Design of an Ankle Rehab Robot With a Compliant Parallel Kinematic Mechanism
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
035003
.
10.
Li
,
Q. C.
,
Xu
,
L. M.
,
Chen
,
Q. H.
, and
Chai
,
X. X.
,
2019
, “
Analytical Elastostatic Stiffness Modeling of Overconstrained Parallel Manipulators Using Geometric Algebra and Strain Energy
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031007
.
11.
Xu
,
L. M.
,
Chai
,
X. X.
,
Li
,
Q. C.
,
Zhang
,
L. A.
, and
Ye
,
W.
,
2019
, “
Design and Experimental Investigation of a New 2R1T Overconstrained Parallel Kinematic Machine With Actuation Redundancy
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031016
.
12.
Bi
,
Z. M.
, and
Kang
,
B.
,
2014
, “
An Inverse Dynamic Model of Over-Constrained Parallel Kinematic Machine Based on Newton-Euler Formulation
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
4
), p.
041001
.
13.
Wang
,
F. B.
,
Chen
,
Q. H.
, and
Li
,
Q. C.
,
2015
, “
Optimal Design of a 2-UPR-RPU Parallel Manipulator
,”
ASME J. Mech. Des.
,
137
(
5
), p.
054501
.
14.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1989
, “
The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator
,”
ASME J. Mech. Des.
,
111
(
2
), pp.
202
207
.
15.
Angeles
,
J.
, and
López-Cajún
,
C. S.
,
1992
, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Rob. Res.
,
11
(
6
), pp.
560
571
.
16.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
17.
Wang
,
J. S.
,
Wu
,
C.
, and
Liu
,
X. J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
18.
Liu
,
X. J.
,
Wu
,
C.
, and
Wang
,
J. S.
,
2012
, “
A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041001
.
19.
Li
,
Q. C.
,
Zhang
,
N. B.
, and
Wang
,
F. B.
,
2017
, “
New Indices for Optimal Design of Redundantly Actuated Parallel Manipulators
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011007
.
20.
Merlet
,
J. P.
,
2007
, “
Jacobian, Manipulability, Condition Number and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
21.
Xu
,
L. M.
,
Li
,
Q. C.
,
Tong
,
J. H.
, and
Chen
,
Q. H.
,
2018
, “
Tex3: An 2R1T Parallel Manipulator With Minimum DOF of Joints and Fixed Linear Actuators
,”
Int. J. Precis. Eng. Manuf.
,
19
(
2
), pp.
227
238
.
22.
Chong
,
Z. H.
,
Xie
,
F. G.
,
Liu
,
X. J.
,
Wang
,
J. S.
, and
Niu
,
H. F.
,
2020
, “
Design of the Parallel Mechanism for a Hybrid Mobile Robot in Wind Turbine Blades Polishing
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101857
.
23.
Ye
,
W.
,
Chai
,
X. X.
, and
Zhang
,
K. T.
,
2020
, “
Kinematic Modeling and Optimization of a New Reconfigurable Parallel Mechanism
,”
Mech. Mach. Theory
,
149
, p.
103850
.
24.
El-Khasawneh
,
B. S.
, and
Ferreira
,
P. M.
,
1999
, “
Computation of Stiffness and Stiffness Bounds for Parallel Link Manipulators
,”
Int. J. Mach. Tools Manuf.
,
39
(
2
), pp.
321
342
.
25.
Li
,
Y. M.
, and
Xu
,
Q. S.
,
2008
, “
Stiffness Analysis for a 3-PUU Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
43
(
2
), pp.
186
200
.
26.
Carbone
,
G.
, and
Ceccarelli
,
M.
,
2010
, “
Comparison of Indices for Stiffness Performance Evaluation
,”
Front. Mech. Eng.
,
5
(
3
), pp.
270
278
.
27.
Yan
,
S. J.
,
Ong
,
S. K.
, and
Nee
,
A. Y.
,
2016
, “
Stiffness Analysis of Parallelogram-Type Parallel Manipulators Using a Strain Energy Method
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
13
22
.
28.
Sun
,
T.
, and
Lian
,
B. B.
,
2018
, “
Stiffness and Mass Optimization of Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
120
, pp.
73
88
.
29.
Yang
,
C.
,
Ye
,
W.
, and
Li
,
Q. C.
,
2022
, “
Review of the Performance Optimization of Parallel Manipulators
,”
Mech. Mach. Theory
,
170
, p.
104725
.
30.
Han
,
C.
,
Kim
,
J.
,
Kim
,
J.
, and
Park
,
F. C.
,
2002
, “
Kinematic Sensitivity Analysis of the 3-UPU Parallel Mechanism
,”
Mech. Mach. Theory
,
37
(
8
), pp.
787
798
.
31.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Washington, DC
,
May 11–15
, pp.
496
502
.
32.
Wu
,
C.
,
Liu
,
X. J.
,
Xie
,
F. G.
, and
Wang
,
J. S.
,
2011
, “
New Measure for 'Closeness' to Singularities of Parallel Robots
,”
Proceedings of the 2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
5135
5140
.
33.
Liu
,
X. J.
,
Chen
,
X.
, and
Nahon
,
M.
,
2014
, “
Motion/Force Constrainability Analysis of Lower-Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031006
.
34.
Meng
,
Q. Z.
,
Xie
,
F. G.
, and
Liu
,
X. J.
,
2020
, “
Motion-Force Interaction Performance Analyses of Redundantly Actuated and Overconstrained Parallel Robots With Closed-Loop Subchains
,”
ASME J. Mech. Des.
,
142
(
10
), p.
103304
.
35.
Shen
,
X. D.
,
Xu
,
L. M.
, and
Li
,
Q. C.
,
2021
, “
Motion/Force Constraint Indices of Redundantly Actuated Parallel Manipulators With Over Constraints
,”
Mech. Mach. Theory
,
165
, p.
104427
.
36.
Hu
,
B.
,
Shi
,
D. S.
,
Xie
,
T. F.
,
Hu
,
B. B.
, and
Ye
,
N. J.
,
2020
, “
Kinematically Identical Manipulators Derivation for the 2-RPU + UPR Parallel Manipulator and Their Constraint Performance Comparison
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061011
.
37.
Li
,
Y. B.
,
Chen
,
K.
,
Sun
,
P.
, and
Wang
,
Z. S.
,
2022
, “
Dynamic Modeling and Performance Evaluation of a Novel Humanoid Ankle Joint
,”
J. Shanghai Jiaotong Univ. (Sci.)
,
27
(
4
), pp.
570
578
.
38.
Song
,
J. K.
,
Zhao
,
C.
,
Zhao
,
K.
,
Yan
,
W. J.
, and
Chen
,
Z. M.
,
2023
, “
Singularity Analysis and Dimensional Synthesis of a 2R1T 3-UPU Parallel Mechanism Based on Performance Atlas
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
011001
.
39.
Brinker
,
J.
,
Corves
,
B.
, and
Takeda
,
Y.
,
2018
, “
Kinematic Performance Evaluation of High-Speed Delta Parallel Robots Based on Motion/Force Transmission Indices
,”
Mech. Mach. Theory
,
125
, pp.
111
125
.
40.
Li
,
Q. C.
,
Yang
,
C.
,
Xu
,
L. M.
, and
Ye
,
W.
,
2023
,
Performance Analysis and Optimization of Parallel Manipulators
,
Springer
,
Singapore
.
41.
Huang
,
Z.
, and
Li
,
Q. C.
,
2003
, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
.
42.
Huang
,
T.
,
Liu
,
H. T.
, and
Chetwynd
,
D. G.
,
2011
, “
Generalized Jacobian Analysis of Lower Mobility Manipulators
,”
Mech. Mach. Theory
,
46
(
6
), pp.
831
844
.
43.
Alt
,
H.
,
1932
, “
Der überstragungswinkel und Seine Bedeutung für das Konstruieren Periodischer Getriebe
,”
Werksstattstechnik
,
26
(
4
), pp.
61
65
.
44.
Tao
,
D. C.
,
1964
,
Applied Linkage Synthesis
,
Addison-Wesley Publishing Company
,
Reading, MA
, pp.
7
12
.
45.
Balli
,
S. S.
, and
Chand
,
S.
,
2002
, “
Transmission Angle in Mechanisms
,”
Mech. Mach. Theory
,
37
(
2
), pp.
175
195
.
46.
Liu
,
X. J.
,
Wang
,
L. P.
,
Xie
,
F.
, and
Bonev
,
I. A.
,
2010
, “
Design of a Three-Axis Articulated Tool Head With Parallel Kinematics Achieving Desired Motion/Force Transmission Characteristics
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021009
.
You do not currently have access to this content.