Abstract

This article investigates decoupled motion control and dimension optimization of composite notched continuum mechanisms. In general, the end-effectors of endoscopic surgical robots predominantly consist of rigid articulated actuators, which exhibit limited maneuverability and face challenges in constrained operational environments. The introduction of continuum mechanisms has emerged as a key solution to address these limitations. In this article, the design, analysis, and development of a novel six-degrees-of-freedom (6-DOF) composite continuum surgical robot are presented. Kinematic modeling of the continuum mechanisms is performed, and a decoupled kinematic model of the composite continuum mechanisms is constructed. Furthermore, based on the local and global dexterity of the composite continuum mechanisms, the optimization of the two-segment lengths of the composite continuum mechanisms is completed. Subsequently, both the forward and inverse kinematic models of the 6-DOF composite continuum surgical robot are developed. Finally, through a series of motion control experiments, the decoupled kinematic model of the prototype is proved to be effective. The prototype has a certain load capacity and can accomplish simple trajectory planning motion, which has the potential application in the field of single-hole interventional minimally invasive surgery.

References

1.
Zhang
,
W.
,
Li
,
H.
,
Cui
,
L.
,
Li
,
H.
,
Zhang
,
X.
,
Fang
,
S.
, and
Zhang
,
Q.
,
2021
, “
Research Progress and Development Trend of Surgical Robot and Surgical Instrument Arm
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
17
(
5
), p.
e2309
.
2.
Kent
,
A. J.
,
Byrnes
,
K. A.
, and
Chang
,
S. H.
,
2020
, “
State of the Art: Robotic Bronchoscopy
,”
Semin. Thorac. Cardiovasc. Surg.
,
32
(
4
), pp.
1030
1035
.
3.
Murgu
,
S. D.
,
2019
, “
Robotic Assisted-Bronchoscopy: Technical Tips and Lessons Learned From the Initial Experience With Sampling Peripheral Lung Lesions
,”
BMC Pulm. Med.
,
19
, pp.
1
8
.
4.
Dupont
,
P. E.
,
Nelson
,
B. J.
,
Goldfarb
,
M.
,
Hannaford
,
B.
,
Menciassi
,
A.
,
O’Malley
,
M. K.
,
Simaan
,
N.
,
Valdastri
,
P.
, and
Yang
,
G. Z.
,
2021
, “
A Decade Retrospective of Medical Robotics Research From 2010 to 2020
,”
Sci. Rob.
,
6
(
60
), p.
eabi8017
.
5.
Haidegger
,
T.
,
Speidel
,
S.
,
Stoyanov
,
D.
, and
Satava
,
R. M.
,
2022
, “
Robot-Assisted Minimally Invasive Surgery—Surgical Robotics in the Data Age
,”
Proceedings of the 2022 IEEE International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
Jul. 1
, Vol. 110, No. 7, pp.
835
846
.
6.
Dupont
,
P. E.
,
Simaan
,
N.
,
Choset
,
H.
, and
Rucker
,
C.
,
2022
, “
Continuum Robots for Medical Interventions
,”
Proceedings of the 2022 IEEE International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
Feb. 8
, Vol. 110, No. 7, pp.
847
870
.
7.
Da Veiga
,
T.
,
Chandler
,
J. H.
,
Lloyd
,
P.
,
Pittiglio
,
G.
,
Wilkinson
,
N. J.
,
Hoshiar
,
A. K.
,
Harris
,
R. A.
, and
Valdastri
,
P.
,
2020
, “
Challenges of Continuum Robots in Clinical Context: A Review
,”
Prog. Biomed. Eng.
,
2
(
3
), p.
032003
.
8.
Kim
,
J.
,
de Mathelin
,
M.
,
Ikuta
,
K.
, and
Kwon
,
D. S.
,
2022
, “
Advancement of Flexible Robot Technologies for Endoluminal Surgeries
,”
Proceedings of the 2022 IEEE International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May. 20
, Vol. 110, No. 7, pp.
909
931
.
9.
Yan
,
L.
,
Wang
,
Q.
,
Li
,
H.
,
Li
,
D.
, and
Xia
,
J.
,
2021
, “
Review of Continue Surgical Robot Actuated by SMA
,”
J. Mech. Eng.
,
57
(
11
), pp.
138
152
.
10.
Russo
,
M.
,
Sadati
,
S. M. H.
,
Dong
,
X.
,
Mohammad
,
A.
,
Walker
,
I. D.
,
Bergeles
,
C.
,
Xu
,
K.
, and
Axinte
,
D. A.
,
2023
, “
Continuum Robots: An Overview
,”
Adv. Intell. Syst.
,
5
(
5
), p.
2200367
.
11.
Zhang
,
X.
,
Yang
,
C.
,
Song
,
Z.
,
Khanesar
,
M. A.
,
Branson
,
D. T.
,
Dai
,
J. S.
, and
Kang
,
R.
,
2024
, “
An Adaptive Lumped-Mass Dynamic Model and Its Control Application for Continuum Robots
,”
Mech. Mach. Theory
,
201
, p.
105736
.
12.
Yu
,
Y.
,
Qiu
,
L.
,
Dai
,
S.
,
Li
,
C.
, and
Wang
,
D.
,
2024
, “
Creating a Flexible Continuum Robot Using Origami and Mortise-Tenon Structure
,”
Mech. Mach. Theory
,
176
, p.
104978
.
13.
Yang
,
J.
,
Harsono
,
E.
, and
Yu
,
H.
,
2024
, “
Dynamic Modeling and Validation of a Hybrid-Driven Continuum Robot With Antagonistic Mechanisms
,”
Mech. Mach. Theory
,
197
, p.
105635
.
14.
Bhalkikar
,
A.
,
Lokesh
,
S.
, and
Ashwin
,
K. P.
,
2024
, “
Kinematic Models for Cable-Driven Continuum Robots With Multiple Segments and Varying Cable Offsets
,”
Mech. Mach. Theory
,
200
, p.
105701
.
15.
Wang
,
Z.
,
Wei
,
X.
,
Yu
,
X.
,
Jia
,
Z.
,
Qian
,
S.
, and
Wang
,
D.
,
2024
, “
Data-Based Shape Self-Sensing of a Cable-Driven Notched Continuum Mechanism Using Multidimensional Intrinsic Force Information for Surgical Robot
,”
ASME J. Mech. Rob.
,
16
(
7
), p.
071002
.
16.
Gafford
,
J. B.
,
Webster
,
S.
,
Dillon
,
N.
,
Blum
,
E.
,
Hendrick
,
R.
,
Maldonado
,
F.
,
Gillaspie
,
E. A.
,
Rickman
,
O. B.
,
Herrell
,
S. D.
, and
Webster
,
R. J.
,
2020
, “
A Concentric Tube Robot System for Rigid Bronchoscopy: A Feasibility Study on Central Airway Obstruction Removal
,”
Ann. Biomed. Eng.
,
48
(
1
), pp.
181
191
.
17.
Lods
,
G.
,
Rosa
,
B.
,
Bayle
,
B.
, and
Nageotte
,
F.
,
2024
, “
Exact Derivative Propagation Method to Compute the Generalized Compliance Matrix for Continuum Robots: Application to Concentric Tubes Continuum Robots
,”
Mech. Mach. Theory
,
200
, p.
105696
.
18.
Wang
,
Z.
,
Liu
,
G.
,
Qian
,
S.
,
Wang
,
D.
,
Wei
,
X.
, and
Yu
,
X.
,
2023
, “
Tracking Control With External Force Self-Sensing Ability Based on Position/Force Estimators and Non-Linear Hysteresis Compensation for a Backdrivable Cable-Pulley-Driven Surgical Robotic Manipulator
,”
Mech. Mach. Theory
,
183
, p.
105259
.
19.
Lee
,
D. H.
,
Kim
,
Y. H.
,
Collins
,
J.
,
Kapoor
,
A.
,
Kwon
,
D. S.
, and
Mansi
,
T.
,
2021
, “
Non-Linear Hysteresis Compensation of a Tendon-Sheath-Driven Robotic Manipulator Using Motor Current
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
1224
1231
.
20.
Wang
,
H.
,
Wang
,
X.
,
Yang
,
W.
, and
Du
,
Z.
,
2020
, “
Design and Kinematic Modeling of a Notch Continuum Manipulator for Laryngeal Surgery
,”
Int. J. Control Autom. Syst.
,
18
(
11
), pp.
2966
2973
.
21.
Ping
,
Z.
,
Zhang
,
T.
,
Gong
,
L.
,
Zhang
,
C.
, and
Zuo
,
S.
,
2021
, “
Miniature Flexible Instrument With Fiber Bragg Grating-Based Triaxial Force Sensing for Intraoperative Gastric Endomicroscopy
,”
Ann. Biomed. Eng.
,
49
(
9
), pp.
2323
2336
.
22.
Feng
,
F.
,
Hong
,
W.
, and
Xie
,
L.
,
2020
, “
Design of 3D-Printed Flexible Joints With Presettable Stiffness for Surgical Robots
,”
IEEE Access
,
8
, pp.
79573
79585
.
23.
Song
,
Y.
,
Wang
,
S.
,
Luo
,
X.
, and
Shi
,
C.
,
2022
, “
Design and Optimization of a 3D Printed Distal Flexible Joint for Endoscopic Surgery
,”
IEEE Trans. Med. Rob. Bionics
,
4
(
1
), pp.
38
49
.
24.
Sefati
,
S.
,
Hegeman
,
R.
,
Alambeigi
,
F.
,
Iordachita
,
I.
,
Kazanzides
,
P.
,
Khanuja
,
H.
,
Taylor
,
R. H.
, and
Armand
,
M.
,
2020
, “
A Surgical Robotic System for Treatment of Pelvic Osteolysis Using an FBG-Equipped Continuum Manipulator and Flexible Instruments
,”
IEEE/ASME Trans. Mechatron.
,
26
(
1
), pp.
369
380
.
25.
Ai
,
X.
,
Gao
,
A.
,
Lin
,
Z.
,
He
,
C.
, and
Chen
,
W.
,
2021
, “
A Multi-Contact-Aided Continuum Manipulator With Anisotropic Shapes
,”
IEEE Robot. Autom. Lett.
,
6
(
3
), pp.
4560
4567
.
26.
Zhang
,
X.
,
Li
,
W.
,
Chiu
,
P. W. Y.
, and
Li
,
Z.
,
2020
, “
A Novel Flexible Robotic Endoscope With Constrained Tendon-Driven Continuum Mechanism
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
1366
1372
.
27.
Wang
,
Z.
,
Bao
,
S.
,
Wang
,
D.
,
Qian
,
S.
,
Zhang
,
J.
, and
Hai
,
M.
,
2023
, “
Design of a Novel Flexible Robotic Laparoscope Using a Two Degrees-of-Freedom Cable-Driven Continuum Mechanism With Major Arc Notches
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
064502
.
28.
Hong
,
W.
,
Feng
,
F.
,
Xie
,
L.
, and
Yang
,
G. Z.
,
2022
, “
A Two-Segment Continuum Robot With Piecewise Stiffness for Maxillary Sinus Surgery and iIts Decoupling Method
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
4440
4450
.
29.
Wang
,
F.
,
Wang
,
H.
,
Luo
,
J.
,
Kang
,
X.
,
Yu
,
H.
,
Lu
,
H.
,
Dong
,
Y.
, and
Jia
,
X.
,
2021
, “
FIORA: A Flexible Tendon-Driven Continuum Manipulator for Laparoscopic Surgery
,”
IEEE Robot. Autom. Lett..
,
7
(
2
), pp.
1166
1173
.
30.
Xu
,
K.
,
Zhao
,
J.
, and
Fu
,
M.
,
2014
, “
Development of the SJTU Unfoldable Robotic System (SURS) for Single Port Laparoscopy
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2133
2145
.
31.
Wu
,
Z.
,
Li
,
Q.
,
Zhao
,
J.
,
Gao
,
J.
, and
Xu
,
K.
,
2019
, “
Design of a Modular Continuum-Articulated Laparoscopic Robotic Tool With Decoupled Kinematics
,”
IEEE Robot. Autom. Lett..
,
4
(
4
), pp.
3545
3552
.
32.
Chen
,
Y.
,
Wu
,
B.
,
Jin
,
J.
, and
Xu
,
K.
,
2021
, “
A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance
,”
IEEE Robot. Autom. Lett..
,
6
(
2
), pp.
1590
1597
.
33.
Wang
,
Z.
,
Bao
,
S.
,
Zi
,
B.
,
Jia
,
Z.
, and
Yu
,
X.
,
2024
, “
Development of a Novel 4-DOF Flexible Endoscopic Robot Using Cable-Driven Multisegment Continuum Mechanisms
,”
ASME J. Mech. Rob.
,
16
(
3
), p.
031011
.
34.
Chitalia
,
Y.
,
Jeong
,
S.
,
Deaton
,
N.
,
Chern
,
J. J.
, and
Desai
,
J. P.
,
2020
, “
Design and Kinematics Analysis of a Robotic Pediatric Neuroendoscope Tool Body
,”
IEEE/ASME Trans. Mechatron.
,
25
(
2
), pp.
985
995
.
35.
Chitalia
,
Y.
,
Jeong
,
S.
,
Yamamoto
,
K. K.
,
Chern
,
J. J.
, and
Desai
,
J. P.
,
2020
, “
Modeling and Control of a 2-DOF Meso-Scale Continuum Robotic Tool for Pediatric Neurosurgery
,”
IEEE Trans. Rob.
,
37
(
2
), pp.
520
531
.
36.
Zhang
,
G.
,
Du
,
F.
,
Xue
,
S.
,
Cheng
,
H.
,
Zhang
,
X.
,
Song
,
R.
, and
Li
,
Y.
,
2022
, “
Design and Modeling of a Bio-Inspired Compound Continuum Robot for Minimally Invasive Surgery
,”
Machines
,
10
(
6
), p.
468
.
37.
Wu
,
L.
,
Crawford
,
R.
, and
Roberts
,
J.
,
2016
, “
Dexterity Analysis of Three 6-DOF Continuum Robots Combining Concentric Tube Mechanisms and Cable-Driven Mechanisms
,”
IEEE Robot. Autom. Lett..
,
2
(
2
), pp.
514
521
.
38.
Ai
,
X.
,
Gao
,
A.
, and
Chen
,
W.
,
2024
, “
Dexterity Comparison and Analysis of Multi-Contact-Aided Continuum Manipulators
,”
IEEE Robot. Autom. Lett.
,
9
(
6
), pp.
5679
5686
.
39.
Leibrandt
,
K.
,
Da Cruz
,
L.
, and
Bergeles
,
C.
,
2023
, “
Designing Robots for Reachability and Dexterity: Continuum Surgical Robots as a Pretext Application
,”
IEEE Trans. Rob.
,
39
(
4
), pp.
2989
3007
.
40.
Wang
,
J.
, and
Lau
,
H. Y. K.
,
2021
, “
Dexterity Analysis Based on Jacobian and Performance Optimization for Multi-Segment Continuum Robots
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061012
.
41.
Cheng
,
T.
,
Zhang
,
G.
,
Sun
,
J.
,
Zhang
,
T.
, and
Du
,
F.
,
2023
, “
Dexterity Enhancement of Continuum Robot for Natural Orifice Transluminal Endoscopic Surgery in the Dual-Manipulator Collaborative Space
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
19
(
4
), p.
e2516
.
42.
Wei
,
H.
,
Zhang
,
G.
,
Du
,
F.
,
Su
,
J.
,
Wu
,
J.
,
Li
,
Y.
, and
Song
,
R.
,
2024
, “
Dexterity Assessment for Wrist Joints of Surgical Robots: A Statics-Based Evaluation Method
,”
IEEE Trans. Instrum. Meas.
,
73
, pp.
1
11
.
43.
Wang
,
Z.
,
Yu
,
X.
,
Hai
,
M.
,
Qian
,
S.
,
Wang
,
D.
, and
Li
,
Z.
,
2024
, “
A Hybrid Method Combining Data-Driven and Model-Based Algorithms for External Force-Sensing and Haptics Control of Cable-Pulley-Driven Surgical Robotic Manipulator
,”
ASME J. Mech. Rob.
,
16
(
10
), p.
101006
.
44.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.
45.
Mahl
,
T.
,
Hildebrandt
,
A.
, and
Sawodny
,
O.
,
2014
, “
A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
935
949
.
46.
Wang
,
Y.
,
Wu
,
Z.
,
Wang
,
L.
,
Feng
,
B.
, and
Xu
,
K.
,
2021
, “
Inverse Kinematics and Dexterous Workspace Formulation for 2-Segment Continuum Robots With Inextensible Segments
,”
IEEE Robot. Autom. Lett.
,
7
(
1
), pp.
510
517
.
47.
Lynch
,
K. M.
, and
Park
,
F. C.
,
2017
,
Modern Robotics: Mechanics, Planning, and Control
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.