Abstract

Climbing capability is crucial for expanding the operational range of ground robots in inspection and exploration tasks within confined or hazardous spaces. We introduce SomerBot, a two-legged somersaulting robot designed for climbing flat and curved vertical surfaces. A key contribution is a 3D-printed compliant footpad with passive adhesion and tendon-driven detachment, reducing energy consumption compared to active adhesion techniques. The robot’s simple two-legged design minimizes fabrication complexity, weight, and power needs, which are critical for wall climbing. Optimized joint trajectory design ensures stable climbing by maintaining optimal surface contact. This article addresses several key issues: scaling of speed, payload, power, and weight with increasing motor torque, finding enhanced payload capacity without compromising speed. SomerBot’s structure, made using rapid prototyping techniques such as 3D printing and laser cutting, allows easy replication and customization. Experiments show its ability to transition between planes, overcome obstacles, and carry payloads at an average speed of 1.33 cm/s (0.12 body lengths/s). This work advances wall-climbing robots with energy-efficient adhesion and scalable design for complex climbing tasks.

References

1.
Xiao
,
J.
,
Xiao
,
J.
,
Xi
,
N.
,
Dulimarta
,
H.
,
Tummala
,
R. L.
,
Minor
,
M.
, and
Mukherjee
,
R.
,
2004
, “
Modeling, Control, and Motion Planning of a Climbing Microrobot
,”
Integr. Comput. Aided Eng.
,
11
(
4
), pp.
289
307
.
2.
Unver
,
O.
, and
Sitti
,
M.
,
2009
, “
Flat Dry Elastomer Adhesives as Attachment Materials for Climbing Robots
,”
IEEE Trans. Robot.
,
26
(
1
), pp.
131
141
.
3.
Yue
,
R.
,
Xiao
,
J.
,
Wang
,
S.
, and
Joseph
,
S. L.
,
2010
, “
Three-Dimensional Path Planning of a Climbing Robot Using Mixed Integer Linear Programming
,”
Adv. Robot.
,
24
(
15
), pp.
2087
2118
.
4.
Eto
,
H.
, and
Asada
,
H. H.
,
2020
, “
Development of a Wheeled Wall-Climbing Robot With a Shape-Adaptive Magnetic Adhesion Mechanism
,”
International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
9329
9335
.
5.
Kim
,
H.
,
Kim
,
D.
,
Yang
,
H.
,
Lee
,
K.
,
Seo
,
K.
,
Chang
,
D.
, and
Kim
,
J.
,
2008
, “
Development of a Wall-Climbing Robot Using a Tracked Wheel Mechanism
,”
J. Mech. Sci. Technol.
,
22
(
8
), pp.
1490
1498
.
6.
Zhang
,
T.
,
Yuan
,
Z.
,
Hong
,
G.
, and
Cai
,
D.
,
2023
, “
Kinematic Analysis and Foot End Trajectory Planning of Quadruped Wall-Climbing Robot Based on Parallel Leg Structure
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
7
), p.
380
.
7.
Sankar
,
K. M.
,
Anugrah
,
A. K.
, and
Thakur
,
A.
,
2023
, “
A Two-Legged Robot for Climbing Vertical Surfaces Based on Pressure-Sensitive Adhesion and Peeling
,”
Climbing and Walking Robots Conference (CLAWAR 2023)
,
Florianópolis, Brazil
,
Oct. 2–4
, Springer, pp.
238
250
.
8.
Bisht
,
R. S.
,
Pathak
,
P. M.
, and
Panigrahi
,
S. K.
,
2023
, “
Modelling, Simulation and Experimental Validation of Wheel and Arm Locomotion Based Wall-Climbing Robot
,”
Robotica
,
41
(
2
), pp.
433
469
.
9.
Nishad
,
S. R.
,
Halder
,
R.
,
Banda
,
G.
, and
Thakur
,
A.
,
2022
, “
Development of a Lizard-Inspired Wall-Climbing Robot Using Pressure Sensitive Adhesion
,”
IEEE Access
,
10
, pp.
72535
72544
.
10.
Kermorgant
,
O.
,
2018
, “
A Magnetic Climbing Robot to Perform Autonomous Welding in the Shipbuilding Industry
,”
Robot. Comput. Integr. Manuf.
,
53
, pp.
178
186
.
11.
Liu
,
Y.
,
Sun
,
S.
,
Wu
,
X.
, and
Mei
,
T.
,
2015
, “
A Wheeled Wall-Climbing Robot With Bio-inspired Spine Mechanisms
,”
J. Bionic Eng.
,
12
(
1
), pp.
17
28
.
12.
Wang
,
Y.
,
Du
,
Q.
,
Zhang
,
T.
, and
Xue
,
C.
,
2021
, “
The Wl_pcr: A Planning for Ground-to-Pole Transition of Wheeled-Legged Pole-Climbing Robots
,”
Robotics
,
10
(
3
), p.
96
.
13.
Huang
,
H.
,
Li
,
D.
,
Xue
,
Z.
,
Chen
,
X.
,
Liu
,
S.
,
Leng
,
J.
, and
Wei
,
Y.
,
2017
, “
Design and Performance Analysis of a Tracked Wall-Climbing Robot for Ship Inspection in Shipbuilding
,”
Ocean Eng.
,
131
, pp.
224
230
.
14.
Chen
,
R.
,
2015
, “
A Gecko-Inspired Electroadhesive Wall-Climbing Robot
,”
IEEE Potentials
,
34
(
2
), pp.
15
19
.
15.
Carlo
,
M.
, and
Metin
,
S.
,
2006
, “
A Biomimetic Climbing Robot Based on the Gecko
,”
J. Bionic Eng.
,
3
(
3
), pp.
115
125
.
16.
Liu
,
Y.
,
Lim
,
B.
,
Lee
,
J. W.
,
Park
,
J.
,
Kim
,
T.
, and
Seo
,
T.
,
2020
, “
Steerable Dry-Adhesive Linkage-Type Wall-Climbing Robot
,”
Mech. Mach. Theory
,
153
, p.
103987
.
17.
Ali
,
N.
,
Zafar
,
U.
,
Ahmad
,
S.
,
Iqbal
,
J.
, and
Khan
,
Z. H.
,
2017
, “
Lizbot Design and Prototyping of a Wireless Controlled Wall Climbing Surveillance Robot
,”
International Conference on Communication Technologies (ComTech)
,
Rawalpindi, Pakistan
,
Apr. 19–21
, IEEE, pp.
210
215
.
18.
Nansai
,
S.
, and
Mohan
,
R. E.
,
2016
, “
A Survey of Wall Climbing Robots: Recent Advances and Challenges
,”
Robotics
,
5
(
3
), p.
14
.
19.
Nagakubo
,
A.
, and
Hirose
,
S.
,
1994
, “
Walking and Running of the Quadruped Wall-Climbing Robot
,”
International Conference on Robotics and Automation
,
San Diego, CA
,
May 8–13
, IEEE, pp.
1005
1012
.
20.
Hu
,
Q.
,
Dong
,
E.
, and
Sun
,
D.
,
2021
, “
Soft Gripper Design Based on the Integration of Flat Dry Adhesive, Soft Actuator, and Microspine
,”
IEEE Trans. Robot.
,
37
(
4
), pp.
1065
1080
.
21.
Kim
,
S.
,
Spenko
,
M.
,
Trujillo
,
S.
,
Heyneman
,
B.
,
Mattoli
,
V.
, and
Cutkosky
,
M. R.
,
2007
, “
Whole Body Adhesion: Hierarchical, Directional and Distributed Control of Adhesive Forces for a Climbing Robot
,”
International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
, IEEE, pp.
1268
1273
.
22.
Xia
,
S.
,
Chen
,
Y.
,
Tian
,
J.
,
Shi
,
J.
,
Geng
,
C.
,
Zou
,
H.
,
Liang
,
M.
, and
Li
,
Z.
,
2021
, “
Superior Low-Temperature Reversible Adhesion Based on Bio-inspired Microfibrillar Adhesives Fabricated by Phenyl Containing Polydimethylsiloxane Elastomers
,”
Adv. Funct. Mater.
,
31
(
26
), p.
2101143
.
23.
Spenko
,
M. J.
,
Haynes
,
G. C.
,
Saunders
,
J.
,
Cutkosky
,
M. R.
,
Rizzi
,
A. A.
,
Full
,
R. J.
, and
Koditschek
,
D. E.
,
2008
, “
Biologically Inspired Climbing With a Hexapedal Robot
,”
J. Field Robot.
,
25
(
4–5
), pp.
223
242
.
24.
Kim
,
S.
,
Asbeck
,
A. T.
,
Cutkosky
,
M. R.
, and
Provancher
,
W. R.
,
2005
, “
Spinybotii: Climbing Hard Walls With Compliant Microspines
,”
International Conference on Advanced Robotics
,
Seattle, WA
,
July 18–20
, IEEE, pp.
601
606
.
25.
Bandyopadhyay
,
T.
,
Steindl
,
R.
,
Talbot
,
F.
,
Kottege
,
N.
,
Dungavell
,
R.
,
Wood
,
B.
,
Barker
,
J.
,
Hoehn
,
K.
, and
Elfes
,
A.
,
2018
, “
Magneto: A Versatile Multi-limbed Inspection Robot
,”
International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, IEEE, pp.
2253
2260
.
26.
Grieco
,
J. C.
,
Prieto
,
M.
,
Armada
,
M.
, and
De Santos
,
P. G.
,
1998
, “
A Six-Legged Climbing Robot for High Payloads
,”
International Conference on Control Applications
,
Trieste, Italy
,
Sept. 4
, IEEE, Vol. 1, pp.
446
450
.
27.
Zhu
,
H.
,
Lin
,
Z.
,
Yan
,
J.
,
Ye
,
P.
,
Zhang
,
W.
,
Mao
,
S.
, and
Guan
,
Y.
,
2022
, “
Compact Lightweight Magnetic Gripper Designed for Biped Climbing Robots Based on Coaxial Rotation of Multiple Magnets
,”
Rob. Auton. Syst.
,
155
, p.
104164
.
28.
Chang
,
Q.
,
Luo
,
X.
,
Qiao
,
Z.
, and
Li
,
Q.
,
2019
, “
Design and Motion Planning of a Biped Climbing Robot With Redundant Manipulator
,”
Appl. Sci.
,
9
(
15
), p.
3009
.
29.
Fan
,
J.
,
Xu
,
T.
,
Fang
,
Q.
,
Zhao
,
J.
, and
Zhu
,
Y.
,
2020
, “
A Novel Style Design of a Permanent-Magnetic Adsorption Mechanism for a Wall-Climbing Robot
,”
J. Mech. Rob.
,
12
(
3
), p.
035001
.
30.
Gao
,
X.
,
Yan
,
L.
,
Wang
,
G.
, and
Chen
,
I.-M.
,
2023
, “
Modeling and Analysis of Magnetic Adhesion Module for Wall-Climbing Robot
,”
IEEE Trans. Instrum. Meas.
,
72
, pp.
1
9
.
31.
Gao
,
S.
,
Hou
,
R.
,
Li
,
J.
,
Pan
,
Y.
,
He
,
S.
, and
Li
,
H.
,
2022
, “
Magnetic Field Analysis and Structure Design of a New Magnetic Wheel for Wall-Climbing Robot
,”
J. Supercond. Novel Magn.
,
35
, pp.
529
537
.
32.
Chen
,
R.
,
Tao
,
X.
,
Cao
,
C.
,
Jiang
,
P.
,
Luo
,
J.
, and
Sun
,
Y.
,
2023
, “
A Soft, Lightweight Flipping Robot With Versatile Motion Capabilities for Wall-Climbing Applications
,”
IEEE Trans. Robot.
,
39
(
5
), pp.
3960
3976
.
33.
Chattopadhyay
,
P.
, and
Ghoshal
,
S. K.
,
2018
, “
Adhesion Technologies of Bio-inspired Climbing Robots: A Survey
,”
Int. J. Robot. Autom.
,
33
(
6
), pp.
654
661
.
34.
Tian
,
Y.
,
Chen
,
C.
,
Sagoe-Crentsil
,
K.
,
Zhang
,
J.
, and
Duan
,
W.
,
2022
, “
Intelligent Robotic Systems for Structural Health Monitoring: Applications and Future Trends
,”
Autom. Constr.
,
139
, p.
104273
.
35.
Xiang
,
L.
, and
Xiaoyu
,
Z.
,
2019
, “
Application of Carbon Fiber Composite Materials in the Field of Industrial Robots
,”
International Conference on Robotics, Intelligent Control and Artificial Intelligence
,
Shanghai, China
,
Sept. 20–22
, Association for Computing Machinery, pp.
310
315
.
36.
Hu
,
Q.
,
Li
,
J.
,
Dong
,
E.
, and
Sun
,
D.
,
2023
, “
Soft Scalable Crawling Robots Enabled by Programmable Origami and Electrostatic Adhesion
,”
IEEE Robot. Autom. Lett.
,
8
(
4
), pp.
2365
2372
.
37.
Yang
,
Y.
,
Wang
,
P.
,
Zhu
,
H.
,
Xia
,
K.
,
Ren
,
T.
,
Shen
,
Y.
, and
Li
,
Y.
,
2024
, “
A Variable Stiffness Soft Robotic Manipulator Based on Antagonistic Design of Supercoiled Polymer Artificial Muscles and Shape Memory Alloys
,”
Sens. Actuators A
,
366
, p.
114999
.
38.
Hirose
,
S.
,
Nagakubo
,
A.
, and
Toyama
,
R.
,
1991
, “
Machine That Can Walk and Climb on Floors, Walls and Ceilings
,”
International Conference on Advanced Robotics
,
Pisa, Italy
,
June 19–22
, Vol. 1, pp.
753
758
.
39.
Balaguer
,
C.
,
Giménez
,
A.
, and
Huete
,
A. J.
,
2005
, “
Climbing Robots’ Mobility for Inspection and Maintenance of 3D Complex Environments
,”
Autonomous Robots
,
18
, pp.
157
169
.
40.
Asbeck
,
A.
,
Kim
,
S.
,
Cutkosky
,
M.
,
Provancher
,
W.
, and
Lanzetta
,
M.
,
2006
, “
Scaling Hard Vertical Surfaces With Compliant Microspine Arrays
,”
Int. J. Robotic Res.
,
25
(
12
), pp.
1165
1179
.
41.
Kim
,
S.
,
Spenko
,
M.
,
Trujillo
,
S.
,
Heyneman
,
B.
,
Santos
,
D.
, and
Cutkosky
,
M. R.
,
2008
, “
Smooth Vertical Surface Climbing With Directional Adhesion
,”
IEEE Trans. Robot.
,
24
(
1
), pp.
65
74
.
42.
Haynes
,
G.
,
Khripin
,
A.
,
Lynch
,
G.
,
Amory
,
J.
,
Saunders
,
A.
,
Rizzi
,
A.
, and
Koditschek
,
D.
,
2009
, “
Rapid Pole Climbing With a Quadrupedal Robot
,”
International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
2767
2772
.
43.
Birkmeyer
,
P.
,
Gillies
,
A.
, and
Fearing
,
R.
,
2011
, “
Clash: Climbing Vertical Loose Cloth
,”
International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
5087
5093
.
44.
Lynch
,
G.
,
Clark
,
J.
,
Lin
,
P.-C.
, and
Koditschek
,
D.
,
2012
, “
A Bioinspired Dynamical Vertical Climbing Robot
,”
Int. J. Robot. Res.
,
31
(
7
), pp.
974
996
.
45.
De Rivaz
,
S. D.
,
Goldberg
,
B.
,
Doshi
,
N.
,
Jayaram
,
K.
,
Zhou
,
J.
, and
Wood
,
R. J.
,
2018
, “
Inverted and Vertical Climbing of a Quadrupedal Microrobot Using Electroadhesion
,”
Sci. Robot.
,
3
(
25
), p.
eaau3038
.
46.
Sison
,
H.
,
Ratsamee
,
P.
,
Higashida
,
M.
,
Mashita
,
T.
,
Uranishi
,
Y.
, and
Takemura
,
H.
,
2021
, “
Spherical Magnetic Joint for Inverted Locomotion of Multi-legged Robot
,”
International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
,
May 30–June 5
, IEEE, pp.
1170
1176
.
47.
Hong
,
S.
,
Um
,
Y.
,
Park
,
J.
, and
Park
,
H.-W.
,
2022
, “
Agile and Versatile Climbing on Ferromagnetic Surfaces With a Quadrupedal Robot
,”
Sci. Robot.
,
7
(
73
), p.
eadd1017
.
You do not currently have access to this content.