The parasitic motion of a parallel four-bar mechanism (PFBM) is undesirable for designers. In this paper, the rigid joints in PFBM are replaced with their flexural counterparts, and the center shift of rotational flexural pivots can be made full use of in order to compensate for this parasitic motion. First, three schemes are proposed to design a family of ultraprecision linear-motion mechanisms. Therefore, the generalized cross-spring pivots are utilized as joints, and six configurations are obtained. Then, for parasitic motion of these configurations, the compensation condition is presented, and the design space of geometric parameters is given. Moreover, the characteristic evaluation of these configurations is implemented, and an approach to improve their performances is further proposed. In addition, a model is developed to parametrically predict the parasitic motion and primary motion. Finally, the analytic model is verified by finite element analysis (FEA), so these linear-motion mechanisms can be employed in precision engineering.

References

1.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Smith
,
S. T.
, 2000,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach Science Publishers
,
New York, NY
.
3.
Paros
,
J. M.
, and
Weisbord
,
L.
, 1965, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
, pp.
151
156
.
4.
Lobontiu
,
N.
, 2002,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
5.
Henein
S.
,
Spanoudakis
P.
,
Droz
S.
,
Myklebust
L. I.
, and
Onillon
E.
, 2003, “
Flexure Pivot for Aerospace Mechanisms
,” 10th European Space Mechanisms and Tribology Symposium, San Sebastian, pp.
1
4
.
6.
Hubbard
,
N. B.
,
Wittwer
,
J. W.
,
Kennedy
,
J. A.
,
Wilcox
,
D. L.
, and
Howell
,
L. L.
, 2004, “
A Novel Fully Compliant Planar Linear-Motion Mechanism
,” Proceedings ASME IDETC/CIE 2004, Paper No. DETC2004/MECH-57008.
7.
Mackay
,
A. B.
,
Smith
,
D. G.
,
Magleby
,
S. P.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2012, “
Metrics for Evaluation and Design of Large-Displacement Linear-Motion Compliant Mechanisms
,”
J. Mech. Des.
,
134
(
1
), p.
011008
.
8.
Roman
,
G. A.
, and
Wiens
,
G. J.
, 2007, “
MEMS Optical Force Sensor Enhancement via Compliant Mechanism
,” Proceedings ASME IDETC/CIE 2007, Paper No. DETC2007/MECH-35345.
9.
Wang
,
Y. C.
, and
Chang
,
S. H.
, 2006, “
Design and Performance of a Piezoelectric Actuated Precise Rotary Positioner
,”
Rev. Sci. Instrum.
,
77
(
10
), p.
105101
.
10.
Parise
,
J. J.
,
Howell
L. L.
, and
Magleby
,
S. P.
, 2001, “
Ortho-Planar Linear-Motion Springs
,”
Mech. Mach. Theory
,
36
(
11–12
), pp.
1281
1299
.
11.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
, 2007, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
12.
Trease
,
B.
,
Moon
,
Y.
, and
Kota
S.
, 2005, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
7
), pp.
788
798
.
13.
Cannon
,
B. R.
,
Lillian
,
T. D.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Linford
,
M. R.
, 2005, “
A Compliant End-Effector for Microscribing
,”
Precis. Eng.
,
29
(
1
), pp.
86
94
.
14.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2007, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
816
830
.
15.
Howell
,
L. L.
,
DiBiasio
,
C. M.
,
Cullinan
,
M. A.
,
Panas
,
R. M.
, and
Culpepper
,
M. L.
, 2010, “
A Pseudo-Rigid-Body Model for Large Deflections of Fixed-Clamped Carbon Nanotubes
,”
J. Mech. Rob.
,
2
(
3
), p.
034501
.
16.
Gao
,
Z.
, and
Zhang
,
D.
, 2012, “
Flexure Parallel Mechanism: Configuration and Performance Improvement of a Compact Acceleration Sensor
,”
J. Mech. Rob.
,
4
(
3
), p.
031002
.
17.
Spanoudakis
P.
,
Schwab
P.
, and
Johnson
P.
, 2003, “
Design and Production of the METOP Satellite IASI Corner Cube Mechanisms
,” 10th European Space Mechanisms and Tribology Symposium.
18.
Henein
,
S.
,
Kjelberg
I.
, and
Zelenika
S.
, 2002, “
Flexible Bearings for High-Precision Mechanisms in Accelerator Facilities
,” Proceedings of NANOBEAM 2002—26th Advanced ICFA Beam Dynamics Workshop on Nanometre-Size Colliding Beams.
19.
Duarte
,
R. M.
,
Howells
,
M. R.
,
Hussain
,
Z.
,
Lauritzen
,
T.
,
McGill
,
R.
,
Moler
,
E. J.
, and
Spring
,
J.
, 1997, “
A Linear Motion Machine for Soft X-Ray Interferometry
,”
Proc. SPIE
,
3123
, pp.
224
232
.
20.
Kee-Bong
,
C.
,
Jae
,
J. L.
, and
Min
,
Y. K.
, 2007, “
Cartwheel Flexure-Based Compliant Stage for Large Displacement Driven by a Stack-Type Piezoelectric Element
,” International Conference on Control, Automation and Systems 2007, pp.
2754
2758
.
21.
Zhao
,
H. Z.
,
Bi
,
S. S.
, and
Yu
,
J. J.
, 2012, “
A Novel Compliant Linear-Motion Mechanism Based on Parasitic Motion Compensation
,”
Mech. Mach. Theory
,
50
, pp.
15
28
.
22.
Zhao
,
H. Z.
, and
Bi
,
S. S
, 2010, “
Stiffness and Stress Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
3
), pp.
378
391
.
23.
Zhao
,
H. Z.
, and
Bi
,
S. S.
, 2010, “
Accuracy Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1434
1448
.
24.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2002, “
The Modeling of Cross-Axis Flexural Pivots
,”
Mech. Theory
,
37
, pp.
461
476
.
25.
Young
,
W. E.
, 1944, “
An Investigation of the Cross-Spring Pivot
,”
J. Appl. Mech.
,
11
, pp.
113
120
.
26.
Haringx
,
J. A.
, 1949, “
The Cross-Spring Pivot as a Constructional Element
,”
Appl. Sci. Res.
,
A1
, pp.
313
332
.
27.
Zelenika
,
S.
, and
DeBona
,
F.
, 2002, “
Analytical and Experimental Characterization of High Precision Flexural Pivots Subjected to Lateral Load
,”
Precis. Eng.
,
26
, pp.
381
388
.
28.
Wittrick
,
W. H.
, 1951, “
The Properties of Crossed Flexural Pivots and the Influence of the Point at Which the Strips Cross
,”
Aeronaut. Q.
,
II
, pp.
272
292
.
You do not currently have access to this content.