In this paper, the kinematics modeling of a notched continuum manipulator is presented, which includes the mechanics-based forward kinematics and the curve-fitting-based inverse kinematics. In order to establish the forward kinematics model by using Denavit–Hartenberg (D–H) procedure, the compliant continuum manipulator featuring the hyper-redundant degrees of freedom (DOF) is simplified into finite discrete joints. Based on that hypothesis, the mapping from the discrete joints to the distal position of the continuum manipulator is built up via the mechanics model. On the other hand, to reduce the effect of the hyper-redundancy for the continuum manipulator's inverse kinematic model, the “curve-fitting” approach is utilized to map the end position to the deformation angle of the continuum manipulator. By the proposed strategy, the inverse kinematics of the hyper-redundant continuum manipulator can be solved by using the traditional geometric method. Finally, the proposed methodologies are validated experimentally on a triangular notched continuum manipulator which illustrates the capability and the effectiveness of our proposed kinematics for continuum manipulators and also can be used as a generic method for such notched continuum manipulators.

References

1.
Robinson
,
G.
, and
Davies
,
J. B. C.
,
1999
, “
Continuum Robots. A State of the Art
,”
IEEE International Conference on Robotics and Automation
(
ICRA'99
),
Detroit, MI
, May 10–15, Vol.
4
, pp.
2849
2854
.10.1109/ROBOT.1999.774029
2.
Webster
, III,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematics Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Robot. Res.
,
29
(
13
), pp.
1661
1683
.10.1177/0278364910368147
3.
Dogangil
,
G.
,
Davies
,
B. L.
, and
Rodriguez y Baena
,
F.
,
2010
, “
A Review of Medical Robotics for Minimally Invasive Soft Tissue Surgery
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
5
), pp.
653
679
.10.1243/09544119JEIM591
4.
Dumpert
,
J.
,
Lehman
,
A. C.
,
Wood
,
N. A.
,
Oleynikov
,
D.
, and
Farritor
,
S. M.
,
2009
, “
Semi-Autonomous Surgical Tasks Using a Miniature In Vivo Surgical Robot
,”
31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC 2009
),
Minneapolis, MN
, Sept. 3–6, pp.
266
269
.10.1109/IEMBS.2009.5332800
5.
Ding
,
J. N.
,
Xu
,
K.
,
Goldman
,
R.
,
Allen
,
P.
,
Fowler
,
D.
, and
Simaan
,
N.
,
2010
, “
Design, Simulation and Evaluation of Kinematic Alternatives for Insertable Robotic Effectors Platforms in Single Port Access Surgery
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
1053
1058
.10.1109/ROBOT.2010.5509244
6.
Suzuki
,
N.
,
Hattori
,
A.
,
Tanoue
,
K.
,
Ieiri
,
S.
,
Konishi
,
K.
,
Tomikawa
,
M.
,
Kenmotsu
,
H.
, and
Hashizume
,
M.
,
2010
, “
Scorpion Shaped Endoscopic Surgical Robot for NOTES and SPS With Augmented Reality Functions
,” 5th International Workshop Medical Imaging and Augmented Reality (
MIAR 2010
), Beijing, China, Sept. 19–20, pp.
541
550
.10.1007/978-3-642-15699-1_57
7.
Rentschler
,
M. E.
,
Dumpert
,
J.
,
Platt
,
S. R.
,
Farritor
,
S. M.
, and
Oleynikov
,
D.
,
2002
, “
Natural Orifice Surgery With an Endoluminal Mobile Robot
,”
Surg. Endoscopy
,
21
(
7
), pp.
1212
1215
.10.1007/s00464-007-9400-z
8.
Buckingham
,
R.
,
1973
, “
Snake Arm Robots
,”
Industrial Robot
,
29
(
3
), pp.
242
245
.10.1108/01439910210425531
9.
Mochiyama
,
H.
,
2011
, “
Whole-Arm Impedance of a Serial-Chain Manipulator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, South Korea, May 21–26, pp.
2223
2228
.10.1109/ROBOT.2001.932953
10.
Neppalli
,
S.
,
Csencsits
,
M. A.
,
Jones
,
B. A.
, and
Walker
,
I. D.
,
2009
, “
Closed-Form Inverse Kinematics for Continuum Manipulators
,”
Adv. Rob.
,
23
(
15
), pp.
2077
2091
.10.1163/016918609X12529299964101
11.
Karpinska
,
J.
, and
Tchon
,
K.
,
2012
, “
Performance-Oriented Design of Inverse Kinematics Algorithms: Extended Jacobian Approximation of the Jacobian Pseudo-Inverse
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021008
.10.1115/1.4006192
12.
Yahya
,
S.
,
Moghawemi
,
M.
, and
Mohamed
,
H. A. F.
,
2011
, “
Geometrical Approach of Planar Hyper-Redundant Manipulators: Inverse Kinematics, Path Planning, and Workspace
,”
Simul. Modell. Pract. Theory
,
19
(
12
), pp.
406
422
.10.1016/j.simpat.2010.08.001
13.
Perez
,
A.
, and
McCarthy
,
J. M.
,
2005
, “
Sizing a Serial Chain to Fit a Task Trajectory Using Clifford Algebra Exponentials
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, April 18–22, pp.
4709
4715
.10.1109/ROBOT.2005.1570847
14.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1994
, “
A Modal Approach to Hyper-Redundant Manipulator Kinematics
,”
IEEE Trans. Rob. Autom.
,
10
(
3
), pp.
343
354
.10.1109/70.294209
15.
Cheng
,
W.-B.
,
Song
,
K.-Y.
,
Di
,
Y.-Y.
,
Zhang
,
E. M.
,
Qian
,
Z.-Q.
,
Kanagaratnam
,
S.
,
Moser
,
M. A. J.
,
Luo
,
W.-L.
, and
Zhang
,
W.-J.
,
2012
, “
Kinematic Model of Colonoscope and Experimental Validation
,”
J. Med. Biol. Eng.
,
33
(3), pp.
337
342
.10.5405/jmbe.1331
16.
Xia
,
Y.
, and
Wang
,
J.
,
2001
, “
A Dual Neural Network for Kinematics Control of Redundant Robot Manipulators
,”
IEEE Trans. Syst., Man, Cybernetics, Part B
,
31
(
1
), pp.
147
154
.10.1109/3477.907574
17.
Köker
,
R.
,
2013
, “
A Genetic Algorithm Approach to a Neural-Network-Based Inverse Kinematics Solution of Robotic Manipulators Based on Error Minimization
,”
Inf. Sci.
,
222
, pp.
528
543
.10.1016/j.ins.2012.07.051
18.
Ozgoren
,
M. K.
,
2013
, “
Optimal Inverse Kinematic Solutions for Redundant Manipulators by Using Analytical Methods to Minimize Position and Velocity Measures
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031009
.10.1115/1.4024294
19.
Camarillo
,
D. B.
,
Milne
,
C. F.
,
Carlson
,
C. R.
,
Zinn
,
M. R.
, and
Salisbury
,
J. K.
,
2008
, “
Mechanics Modeling of Tendon-Driven Continuum Manipulators
,”
IEEE Trans. Rob.
,
24
(
6
), pp.
1262
1273
.10.1109/TRO.2008.2002311
20.
Simaan
,
N.
,
Taylor
,
R.
, and
Flint
,
P.
,
2004
, “
A Dexterous System for Laryngeal Surgery
,”
IEEE International Conference Robotics and Automation
(
ICRA '04
), New Orleans, LA, Apr. 26–May 1, pp.
351
357
.10.1109/ROBOT.2004.1307175
21.
Kutzer
,
M. D. M.
,
Segreti
,
S. M.
,
Brown
,
C. Y.
,
Taylor
,
R. H.
,
Mears
,
S. C.
, and
Armand
,
M.
,
2011
, “
Design of a New Cable-Driven Manipulator With a Large Open Lumen: Preliminary Applications in the Minimally Invasive Removal of Osteolysis
,”
IEEE International Conference Robotics and Automation
(
ICRA
),
Shanghai
, China, May 9–13, pp.
2913
2920
.10.1109/ICRA.2011.5980285
22.
Murphy
,
R. J.
,
Moses
,
M. S.
,
Kutzer
,
M. D. M.
,
Chirikjian
,
G. S.
, and
Armand
,
M.
,
2013
, “
Constrained Workspace Generation for Snake-Like Manipulator With Applications to Minimally Invasive Surgery
,”
IEEE International Conference Robotics and Automation
(
ICRA
),
Karlsruhe
, Germany, May 6–10, pp.
5321
5327
.10.1109/ICRA.2013.6631342
23.
Hannan
,
M. A.
, and
Walker
,
I. D.
,
2003
, “
Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots
,”
J. Rob. Syst.
,
20
(2), pp. 45–63.10.1002/rob.10070
24.
Giorelli
,
M.
,
Renda
,
F.
,
Calisti
,
M.
,
Arienti
,
A.
,
Ferri
,
G.
, and
Laschi
,
C.
,
2012
, “
A Two Dimensional Inverse Kinetics Model of a Cable Driven Manipulator Inspired by the Octopus Arm
,”
IEEE International Conference Robotics and Automation
(
ICRA
),
Saint Paul, MN
, May 14–18, pp.
3819
3824
.10.1109/ICRA.2012.6225254
25.
Godage
,
I. S.
,
Branson
,
D. T.
,
Guglielmino
,
E.
,
Medrano-Cerda
,
G. A.
, and
Caldwell
,
D. G.
,
2011
, “
Shape Function-Based Kinematics and Dynamics for Variable Length Continuum Robotic Arms
,”
IEEE International Conference Robotics and Automation
(
ICRA
),
Shanghai
, China, May 9–13, pp.
452
457
.10.1109/ICRA.2011.5979607
26.
Kang
,
R.
,
Branson
,
D. T.
,
Zheng
,
T.
,
Guglielmino
,
E.
, and
Caldwell
,
D. G.
,
2013
, “
Design, Modeling and Control of a Pneumatically Actuated Manipulator Inspired by Biological Continuum Structures
,”
Bioinspiration & Biomimetics
,
8
(
3
), p.
036008
.10.1088/1748-3182/8/3/036008
27.
Burgner
,
J.
,
Rucker
,
D. C.
,
Gilbert
,
H. B.
,
Swaney
,
P. J.
,
Russell
,
P. T.
,
Weaver
,
K. D.
, and
Webster
, III,
R. J.
,
2013
, “
A Telerobotic System for Transnasal Surgery
,”
IEEE/ASME Trans. Mechatronics
,
19
(
3
), pp.
996
1006
.10.1109/TMECH.2013.2265804
28.
Lock
,
J.
,
Laing
,
G.
,
Mahvash
,
M.
, and
Dupont
,
P. E.
,
2010
, “
Quasistatic Modeling of Concentric Tube Robots With External Loads
,”
IEEE/RSJ International Conference Intelligent Robots and Systems
(
IROS
),
Taipei
, Taiwan, Oct. 18–22, pp.
2325
2332
.10.1109/IROS.2010.5651240
29.
Yang
,
W.
,
Dong
,
W.
, and
Du
,
Z.
,
2013
, “
Mechanics-Based Kinematics Modeling of a Continuum Manipulator
,”
IEEE/RSJ International Conference Intelligent Robots and Systems
(
IROS
),
Tokyo
, Nov. 3–7, pp.
5052
5058
.10.1109/IROS.2013.6697087
30.
Han
,
S. M.
,
Benaroya
,
H.
, and
Wei
,
T.
,
1999
, “
Dynamics of Transversely Vibrating Beams Using Four Engineering Theories
,”
J. Sound Vib.
,
225
(
5
), pp.
935
988
10.1006/jsvi.1999.2257.
31.
Luo
,
Y.
,
2008
, “
An Efficient 3D Timoshenko Beam Element With Consistent Shape Functions
,”
Adv. Theor. Appl. Mech.
,
1
(
3
), pp.
95
106
.http://www.m-hikari.com/atam/atam2008/atam1-4-2008/luoATAM1-4-2008-1
32.
Cowper
,
G. R.
,
1966
, “
The Shear Coefficient in Timoshenko's Beam Theory
,”
ASME J. Appl. Mech.
,
33
(2), pp.
335
340
.10.1115/1.3625046
33.
Melosh
,
R. J.
,
1963
, “
Basis for Derivation of Matrices for the Direct Stiffness Method
,”
AIAA J.
,
1
(
7
), pp.
1631
1637
.10.2514/3.1869
You do not currently have access to this content.