This paper is focused on design of dive maneuvers that can be performed outdoors on flapping wing air vehicles (FWAVs) with a minimal amount of on-board computing capability. We present a simple computational model that provides accuracy of 5 m in open loop operation mode for outdoor dives under wind speeds of up to 3 m/s. This model is executed using a low power, on-board processor. We have also demonstrated that the platform can independently execute roll control through tail positioning, and dive control through wing positioning to produce safe dive behaviors. These capabilities were used to successfully demonstrate autonomous dive maneuvers on the Robo Raven platform developed at the University of Maryland.
Issue Section:
Research Papers
References
1.
Gerdes
, J. W.
, Gupta
, S. K.
, and Wilkerson
, S. A.
, 2012
, “A Review of Bird-Inspired Flapping Wing Miniature Air Vehicle Designs
,” ASME J. Mech. Rob.
, 4
(2
), p. 021003
.2.
Floreano
, D.
, and Wood
, R. J.
, 2015
, “Science, Technology and the Future of Small Autonomous Drones
,” Nature
, 521
(7553
), pp. 460
–466
.3.
Fuller
, S. B.
, Karpelson
, M.
, Censi
, A.
, Ma
, K. Y.
, and Wood
, R. J.
, 2014
, “Controlling Free Flight of a Robotic Fly Using an Onboard Vision Sensor Inspired by Insect Ocelli
,” J. R. Soc. Interface
, 11
(97
), p. 20140281
.4.
Gerdes
, J.
, Holness
, A.
, Perez-Rosado
, A.
, Roberts
, L.
, Greisinger
, A.
, Barnett
, E.
, Kempny
, J.
, Lingam
, D.
, Yeh
, C.-H.
, Bruck
, H. A.
, and Gupta
, S. K.
, 2014
, “Robo Raven: A Flapping-Wing Air Vehicle With Highly Compliant and Independently Controlled Wings
,” Soft Rob.
, 1
(4
), pp. 275
–288
.5.
Keennon
, M.
, Klingebiel
, K.
, Won
, H.
, and Andriukov
, A.
, 2012
, “Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle
,” AIAA
Paper No. 2012-0588.6.
Ramezani
, A.
, Chung
, S.-J.
, and Hutchinson
, S.
, 2017
, “A Biomimetic Robotic Platform to Study Flight Specializations of Bats
,” Sci. Rob.
, 2
(3
), p. eaal2505.7.
Madangopal
, R.
, Khan
, Z. A.
, and Agrawal
, S. K.
, 2005
, “Biologically Inspired Design of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms and Quasi-Steady Aerodynamics
,” ASME J. Mech. Des.
, 127
(4
), pp. 809
–816
.8.
Mackenzie
, D.
, 2012
, “A Flapping of Wings
,” Science
, 335
(6075
), pp. 1430
–1433
.9.
Mueller
, D.
, Bruck
, H.
, and Gupta
, S. K.
, 2010
, “Measurement of Thrust and Lift Forces Associated With Drag of Compliant Flapping Wing for Micro Air Vehicles Using a New Test Stand Design
,” Exp. Mech.
, 50
(6
), pp. 725
–735
.10.
Bejgerowski
, W.
, Ananthanarayanan
, A.
, Mueller
, D.
, and Gupta
, S. K.
, 2009
, “Integrated Product and Process Design for a Flapping Wing Drive Mechanism
,” ASME J. Mech. Des.
, 131
(6
), p. 061006
.11.
Mueller
, D.
, Gerdes
, J. W.
, and Gupta
, S. K.
, 2009
, “Incorporation of Passive Wing Folding in Flapping Wing Miniature Air Vehicles
,” ASME
Paper No. DETC2009-87543.12.
Gerdes
, J.
, Cellon
, K.
, Bruck
, H.
, and Gupta
, S.
, 2013
, “Characterization of the Mechanics of Compliant Wing Designs for Flapping-Wing Miniature Air Vehicles
,” Exp. Mech.
, 53
(9
), pp. 1561
–1571
.13.
Bejgerowski
, W.
, Gerdes
, J. W.
, Gupta
, S. K.
, Bruck
, H. A.
, and Wilkerson
, S.
, 2010
, “Design and Fabrication of a Multi-Material Compliant Flapping Wing Drive Mechanism for Miniature Air Vehicles
,” ASME
Paper No. DETC2010-28519.14.
Perez-Rosado
, A.
, Gehlhar
, R. D.
, Nolen
, S.
, Gupta
, S. K.
, and Bruck
, H. A.
, 2015
, “Design, Fabrication, and Characterization of Multifunctional Wings to Harvest Solar Energy in Flapping Wing Air Vehicles
,” Smart Mater. Struct.
, 24
(6
), p. 065042
.15.
Ward
, T. A.
, Rezadad
, M.
, Fearday
, C. J.
, and Viyapuri
, R.
, 2015
, “A Review of Biomimetic Air Vehicle Research: 1984-2014
,” Int. J. Micro Air Veh.
, 7
(3
), pp. 375
–394
.16.
Cai
, G.
, Dias
, J.
, and Seneviratne
, L.
, 2014
, “A Survey of Small-Scale Unmanned Aerial Vehicles: Recent Advances and Future Development Trends
,” Unmanned Syst.
, 2
(02
), pp. 175
–199
.17.
Shigeoka
, K. S.
, 2007
, “Velocity and Altitude Control of an Ornithopter Micro Aerial Vehicle
,” Ph.D. thesis
, The University of Utah, Salt Lake City, UT.http://www.eng.utah.edu/~minor/thesis/katie%20shigeoka%20thesis%20final.pdf18.
Baek
, S. S.
, 2011
, “Autonomous Ornithopter Flight With Sensor-Based Behavior
,” University of California, Berkeley, CA, Technical Report No. UCB/EECS-2011-65
.https://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-65.html19.
Caetano
, J.
, Verboom
, J.
, De Visser
, C.
, De Croon
, G.
, Remes
, B.
, De Wagter
, C.
, and Mulder
, M.
, 2013
, “Near-Hover Flapping Wing MAV Aerodynamic Modelling: A Linear Model Approach
,” International Micro Air Vehicle Conference and Flight Competition
(IMAV
), Toulouse, France, Sept. 17–20, pp. 1–10.http://www.imav2013.org/index.php/component/phocadownload/category/3-scientific-session-3%3Fdownload=20:2-near-hover-flapping-wing-mav-aerodynamic-modelling-a-linear-model-approach20.
Caetano
, J. V.
, De Visser
, C.
, De Croon
, G.
, Remes
, B.
, De Wagter
, C.
, Verboom
, J.
, and Mulder
, M.
, 2013
, “Linear Aerodynamic Model Identification of a Flapping Wing MAV Based on Flight Test Data
,” Int. J. Micro Air Veh.
, 5
(4
), pp. 273
–286
.21.
Caetano
, J. V.
, de Visser
, C. C.
, Remes
, B.
, De Wagter
, C.
, and Mulder
, M.
, 2013
, “Controlled Flight Maneuvers of a Flapping Wing Micro Air Vehicle: A Step Towards the Delfly II Identification
,” AIAA
Paper No. 2013-4843.22.
Armanini
, S.
, de Visser
, C.
, de Croon
, G.
, and Mulder
, M.
, 2015
, “Time-Varying Model Identification of Flapping-Wing Vehicle Dynamics Using Flight Data
,” J. Guid., Control, Dyn.
, 39
(3
), pp. 526
–541
.23.
Lee
, J.-S.
, and Han
, J.-H.
, 2013
, “Indoor Flight Testing and Controller Design of Bioinspired Ornithopter
,” Intelligent Autonomous Systems 12
, Springer-Verlag, Berlin, pp. 825
–834
.24.
Pfeiffer
, A. T.
, Lee
, J.-S.
, Han
, J.-H.
, and Baier
, H.
, 2010
, “Ornithopter Flight Simulation Based on Flexible Multi-Body Dynamics
,” J. Bionic Eng.
, 7
(1
), pp. 102
–111
.25.
Rose
, C.
, and Fearing
, R. S.
, 2014
, “Comparison of Ornithopter Wind Tunnel Force Measurements With Free Flight
,” IEEE International Conference on Robotics and Automation
(ICRA
), Hong Kong, China, May 31–June 7, pp. 1816
–1821
.26.
Grauer
, J. A.
, and Hubbard
, J. E.
, 2009
, “Multibody Model of an Ornithopter
,” J. Guid., Control, Dyn.
, 32
(5
), pp. 1675
–1679
.27.
Grauer
, J.
, and Hubbard
, J.
, 2010
, “Modeling of Ornithopter Flight Dynamics for State Estimation and Control
,” American Control Conference
(ACC
), Baltimore, MD, June 30–July 2, pp. 524
–529
.28.
Grauer
, J.
, 2012
, “Modeling and System Identification of an Ornithopter Flight Dynamics Model
,” Ph.D. thesis
, University of Maryland, College Park, MD.http://drum.lib.umd.edu/handle/1903/1257129.
Grauer
, J.
, Ulrich
, E.
, Hubbard
, J. E.
, Pines
, D.
, and Humbert
, J. S.
, 2011
, “Testing and System Identification of an Ornithopter in Longitudinal Flight
,” J. Aircr.
, 48
(2
), pp. 660
–667
.30.
Orlowski
, C. T.
, and Girard
, A. R.
, 2011
, “Modeling and Simulation of Nonlinear Dynamics of Flapping Wing Micro Air Vehicles
,” AIAA J.
, 49
(5
), pp. 969
–981
.31.
Orlowski
, C. T.
, 2011
, “Flapping Wing Micro Air Vehicles: An Analysis of the Importance of the Mass of the Wings to Flight Dynamics, Stability, and Control
,” Ph.D. thesis
, The University of Michigan, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/8635032.
Kim
, J.-K.
, and Han
, J.-H.
, 2014
, “A Multibody Approach for 6-DOF Flight Dynamics and Stability Analysis of the Hawkmoth Manduca Sexta
,” Bioinspiration Biomimetics
, 9
(1
), p. 016011
.33.
Deng
, X.
, Schenato
, L.
, Wu
, W. C.
, and Sastry
, S. S.
, 2006
, “Flapping Flight for Biomimetic Robotic Insects—Part I: System Modeling
,” IEEE Trans. Rob.
, 22
(4
), pp. 776
–788
.34.
Chung
, S.-J.
, and Dorothy
, M.
, 2010
, “Neurobiologically Inspired Control of Engineered Flapping Flight
,” J. Guid., Control, Dyn.
, 33
(2
), pp. 440
–453
.35.
Paranjape
, A. A.
, Chung
, S.-J.
, Hilton
, H. H.
, and Chakravarthy
, A.
, 2012
, “Dynamics and Performance of Tailless Micro Aerial Vehicle With Flexible Articulated Wings
,” AIAA J.
, 50
(5
), pp. 1177
–1188
.36.
Mahony
, R.
, Kumar
, V.
, and Corke
, P.
, 2012
, “Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor
,” Rob. Autom. Mag.
, 19
(3
), pp. 20
–32
.37.
Mellinger
, D.
, Michael
, N.
, and Kumar
, V.
, 2014
, “Trajectory Generation and Control for Precise Aggressive Maneuvers With Quadrotors
,” Experimental Robotics: The 12th International Symposium on Experimental Robotics
, Springer
, Berlin
, pp. 361
–373
.38.
Thomas
, J.
, Loianno
, G.
, Daniilidis
, K.
, and Kumar
, V.
, 2015
, “Visual Servoing of Quadrotors for Perching by Hanging From Cylindrical Objects
,” IEEE Rob. Autom. Lett.
, 1
(1), pp. 57–64.39.
Desbiens, A. L., and Cutkosky, M. R.,
2010
, “Landing and Perching on Vertical Surfaces With Microspines for Small Unmanned Air Vehicles
,” J. Intell. Rob. Sys.
, 57
(1), pp. 313–327.40.
Abbeel
, P.
, Coates
, A.
, and Ng
, A. Y.
, 2010
, “Autonomous Helicopter Aerobatics Through Apprenticeship Learning
,” Int. J. Rob. Res.
, 29
(13
), pp. 1608–1639.41.
Cutler
, M. J.
, 2012
, “Design and Control of an Autonomous Variable-Pitch Quadrotor Helicopter
,” Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/7710642.
Paranjape
, A. A.
, Chung
, S.-J.
, and Kim
, J.
, 2013
, “Novel Dihedral-Based Control of Flapping-Wing Aircraft With Application to Perching
,” IEEE Trans. Rob.
, 29
(5
), pp. 1071
–1084
.43.
Tijmons
, S.
, 2012
, “Stereo Vision for Flapping Wing Mavs: Design of an Obstacle Avoidance System
,” Ph.D. thesis
, TU Delft, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3Af97ac167-38e5-4155-933c-efa2ee17971244.
De Croon
, G.
, De Weerdt
, E.
, De Wagter
, C.
, Remes
, B.
, and Ruijsink
, R.
, 2012
, “The Appearance Variation Cue for Obstacle Avoidance
,” IEEE Trans. Rob.
, 28
(2
), pp. 529
–534
.45.
De Croon
, G.
, De Clercq
, K.
, Ruijsink
, Remes
, and De Wagter
, C.
, 2009
, “Design, Aerodynamics, and Vision-Based Control of the Delfly
,” Int. J. Micro Air Veh.
, 1
(2
), pp. 71
–97
.46.
Floreano
, D.
, Zufferey
, J.-C.
, Srinivasan
, M. V.
, and Ellington
, C.
, 2009
, Flying Insects and Robots
, Springer
, Berlin
.47.
Dietl
, J. M.
, and Garcia
, E.
, 2008
, “Ornithopter Trajectory Generation With Stabilization
,” ASME
Paper No. SMASIS2008-615.48.
Dietl
, J. M.
, and Garcia
, E.
, 2009
, “Ornithopter Flight Maneuver Control
,” ASME
Paper No. SMASIS2009-1323.49.
Deng
, X.
, Schenato
, L.
, and Sastry
, S. S.
, 2006
, “Flapping Flight for Biomimetic Robotic Insects—Part II: Flight Control Design
,” IEEE Trans. Rob.
, 22
(4
), pp. 789
–803
.50.
Baek
, S. S.
, Garcia Bermudez
, F. L.
, and Fearing
, R. S.
, 2011
, “Flight Control for Target Seeking by 13 Gram Ornithopter
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS
), San Francisco, CA, Sept. 25–30, pp. 2674
–2681
.51.
Hong
, J.
, Kim
, S.
, Paik
, I.
, and Park
, C.
, 2011
, “Autonomous Flight Test of Flapping Micro Air Vehicle
,” 18th International Conference on Composite Materials
(ICCM
), Jeju Island, Korea, Aug. 21–26, pp. 1–4.http://www.iccm-central.org/Proceedings/ICCM18proceedings/data/2.%20Oral%20Presentation/Aug26(Friday)/F18%20KASSAT%20(Korean%20Aero-vehicle%20Smart%20Skin%20Antenna%20Technology)%20&%20FMAV%20(Flapping%20Micro%20Air%20Vehicle)/F18-1-AK2024.pdf52.
Karásek
, M.
, Hua
, A.
, Nan
, Y.
, Lalami
, M.
, and Preumont
, A.
, 2014
, “Pitch and Roll Control Mechanism for a Hovering Flapping Wing MAV
,” Int. J. Micro Air Veh.
, 6
(4
), pp. 253
–264
.53.
Karasek
, M.
, 2014
, “Robotic Hummingbird: Design of a Control Mechanism for a Hovering Flapping Wing Micro Air Vehicle
,” Ph.D. thesis
Université Libre de Bruxelles, Brussels, Belgium.http://scmero.ulb.ac.be/Publications/Thesis/Karasek_2014_thesis.pdf54.
Jackowski
, Z. J.
, 2009
, “Design and Construction of an Autonomous Ornithopter
,” Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.http://groups.csail.mit.edu/robotics-center/public_papers/Jackowski09.pdf55.
Krashanitsa
, R. Y.
, Silin
, D.
, Shkarayev
, S. V.
, and Abate
, G.
, 2009
, “Flight Dynamics of a Flapping-Wing Air Vehicle
,” Int. J. Micro Air Veh.
, 1
(1
), pp. 35
–49
.56.
Roberts
, L.
, Bruck
, H. A.
, and Gupta
, S. K.
, 2014
, “Autonomus Loitering Control for a Flapping Wing Miniature Aerial Vehicle With Independent Wing Control
,” ASME
Paper No. DETC2014-34752.57.
Ramezani
, A.
, Shi
, X.
, Chung
, S.-J.
, and Hutchinson
, S.
, 2016
, “Bat bot (b2), a Biologically Inspired Flying Machine
,” IEEE International Conference on Robotics and Automation
(ICRA
), Stockholm, Sweden, May 16–21, pp. 3219
–3226
.58.
Hoff
, J.
, Ramezani
, A.
, Chung
, S.-J.
, and Hutchinson
, S.
, 2016
, “Synergistic Design of a Bio-Inspired Micro Aerial Vehicle With Articulated Wings
,” Robotics: Science and Systems Conference
(RSS
), Ann Arbor, MI, June 18–22, pp. 3219
–3226
.http://www.roboticsproceedings.org/rss12/p09.pdf59.
Kim
, H.-Y.
, Lee
, J.-S.
, Choi
, H.-L.
, and Han
, J.-H.
, 2014
, “Autonomous Formation Flight of Multiple Flapping-Wing Flying Vehicles Using Motion Capture System
,” Aerosp. Sci. Technol.
, 39
, pp. 596
–604
.60.
Rose
, C.
, 2015
, “Modeling and Control of an Ornithopter for Non-Equilibrium Maneuvers
,” Ph.D. thesis
, University of California, Berkeley, CA.http://digitalassets.lib.berkeley.edu/etd/ucb/text/Rose_berkeley_0028E_15875.pdf61.
Koopmans
, J.
, Tijmons
, S.
, De Wagter
, C.
, and de Croon
, G.
, 2015
, “Passively Stable Flapping Flight From Hover to Fast Forward Through Shift in Wing Position
,” Int. J. Micro Air Veh.
, 7
(4
), pp. 407
–418
.62.
Holness
, A. E.
, Bruck
, H.
, and Gupta
, S.
, 2015
, “Design of Propeller-Assisted Flapping Wing Air Vehicles for Enhanced Aerodynamic Performance
,” ASME
Paper No. DETC2015-47577.63.
Roberts
, L.
, Bruck
, H. A.
, and Gupta
, S. K.
, 2015
, “Modeling of Dive Maneuvers in Flapping Wing Unmanned Aerial Vehicles
,” IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR
), West Lafayette, IN, Oct. 18–20, pp. 1–6.Copyright © 2017 by ASME
You do not currently have access to this content.