This paper is focused on design of dive maneuvers that can be performed outdoors on flapping wing air vehicles (FWAVs) with a minimal amount of on-board computing capability. We present a simple computational model that provides accuracy of 5 m in open loop operation mode for outdoor dives under wind speeds of up to 3 m/s. This model is executed using a low power, on-board processor. We have also demonstrated that the platform can independently execute roll control through tail positioning, and dive control through wing positioning to produce safe dive behaviors. These capabilities were used to successfully demonstrate autonomous dive maneuvers on the Robo Raven platform developed at the University of Maryland.

References

1.
Gerdes
,
J. W.
,
Gupta
,
S. K.
, and
Wilkerson
,
S. A.
,
2012
, “
A Review of Bird-Inspired Flapping Wing Miniature Air Vehicle Designs
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021003
.
2.
Floreano
,
D.
, and
Wood
,
R. J.
,
2015
, “
Science, Technology and the Future of Small Autonomous Drones
,”
Nature
,
521
(
7553
), pp.
460
466
.
3.
Fuller
,
S. B.
,
Karpelson
,
M.
,
Censi
,
A.
,
Ma
,
K. Y.
, and
Wood
,
R. J.
,
2014
, “
Controlling Free Flight of a Robotic Fly Using an Onboard Vision Sensor Inspired by Insect Ocelli
,”
J. R. Soc. Interface
,
11
(
97
), p.
20140281
.
4.
Gerdes
,
J.
,
Holness
,
A.
,
Perez-Rosado
,
A.
,
Roberts
,
L.
,
Greisinger
,
A.
,
Barnett
,
E.
,
Kempny
,
J.
,
Lingam
,
D.
,
Yeh
,
C.-H.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2014
, “
Robo Raven: A Flapping-Wing Air Vehicle With Highly Compliant and Independently Controlled Wings
,”
Soft Rob.
,
1
(
4
), pp.
275
288
.
5.
Keennon
,
M.
,
Klingebiel
,
K.
,
Won
,
H.
, and
Andriukov
,
A.
,
2012
, “
Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle
,”
AIAA
Paper No. 2012-0588.
6.
Ramezani
,
A.
,
Chung
,
S.-J.
, and
Hutchinson
,
S.
,
2017
, “
A Biomimetic Robotic Platform to Study Flight Specializations of Bats
,”
Sci. Rob.
,
2
(
3
), p. eaal2505.
7.
Madangopal
,
R.
,
Khan
,
Z. A.
, and
Agrawal
,
S. K.
,
2005
, “
Biologically Inspired Design of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms and Quasi-Steady Aerodynamics
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
809
816
.
8.
Mackenzie
,
D.
,
2012
, “
A Flapping of Wings
,”
Science
,
335
(
6075
), pp.
1430
1433
.
9.
Mueller
,
D.
,
Bruck
,
H.
, and
Gupta
,
S. K.
,
2010
, “
Measurement of Thrust and Lift Forces Associated With Drag of Compliant Flapping Wing for Micro Air Vehicles Using a New Test Stand Design
,”
Exp. Mech.
,
50
(
6
), pp.
725
735
.
10.
Bejgerowski
,
W.
,
Ananthanarayanan
,
A.
,
Mueller
,
D.
, and
Gupta
,
S. K.
,
2009
, “
Integrated Product and Process Design for a Flapping Wing Drive Mechanism
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061006
.
11.
Mueller
,
D.
,
Gerdes
,
J. W.
, and
Gupta
,
S. K.
,
2009
, “
Incorporation of Passive Wing Folding in Flapping Wing Miniature Air Vehicles
,”
ASME
Paper No. DETC2009-87543.
12.
Gerdes
,
J.
,
Cellon
,
K.
,
Bruck
,
H.
, and
Gupta
,
S.
,
2013
, “
Characterization of the Mechanics of Compliant Wing Designs for Flapping-Wing Miniature Air Vehicles
,”
Exp. Mech.
,
53
(
9
), pp.
1561
1571
.
13.
Bejgerowski
,
W.
,
Gerdes
,
J. W.
,
Gupta
,
S. K.
,
Bruck
,
H. A.
, and
Wilkerson
,
S.
,
2010
, “
Design and Fabrication of a Multi-Material Compliant Flapping Wing Drive Mechanism for Miniature Air Vehicles
,”
ASME
Paper No. DETC2010-28519.
14.
Perez-Rosado
,
A.
,
Gehlhar
,
R. D.
,
Nolen
,
S.
,
Gupta
,
S. K.
, and
Bruck
,
H. A.
,
2015
, “
Design, Fabrication, and Characterization of Multifunctional Wings to Harvest Solar Energy in Flapping Wing Air Vehicles
,”
Smart Mater. Struct.
,
24
(
6
), p.
065042
.
15.
Ward
,
T. A.
,
Rezadad
,
M.
,
Fearday
,
C. J.
, and
Viyapuri
,
R.
,
2015
, “
A Review of Biomimetic Air Vehicle Research: 1984-2014
,”
Int. J. Micro Air Veh.
,
7
(
3
), pp.
375
394
.
16.
Cai
,
G.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2014
, “
A Survey of Small-Scale Unmanned Aerial Vehicles: Recent Advances and Future Development Trends
,”
Unmanned Syst.
,
2
(
02
), pp.
175
199
.
17.
Shigeoka
,
K. S.
,
2007
, “
Velocity and Altitude Control of an Ornithopter Micro Aerial Vehicle
,”
Ph.D. thesis
, The University of Utah, Salt Lake City, UT.http://www.eng.utah.edu/~minor/thesis/katie%20shigeoka%20thesis%20final.pdf
18.
Baek
,
S. S.
,
2011
, “
Autonomous Ornithopter Flight With Sensor-Based Behavior
,” University of California, Berkeley, CA, Technical Report No.
UCB/EECS-2011-65
.https://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-65.html
19.
Caetano
,
J.
,
Verboom
,
J.
,
De Visser
,
C.
,
De Croon
,
G.
,
Remes
,
B.
,
De Wagter
,
C.
, and
Mulder
,
M.
,
2013
, “
Near-Hover Flapping Wing MAV Aerodynamic Modelling: A Linear Model Approach
,”
International Micro Air Vehicle Conference and Flight Competition
(
IMAV
), Toulouse, France, Sept. 17–20, pp. 1–10.http://www.imav2013.org/index.php/component/phocadownload/category/3-scientific-session-3%3Fdownload=20:2-near-hover-flapping-wing-mav-aerodynamic-modelling-a-linear-model-approach
20.
Caetano
,
J. V.
,
De Visser
,
C.
,
De Croon
,
G.
,
Remes
,
B.
,
De Wagter
,
C.
,
Verboom
,
J.
, and
Mulder
,
M.
,
2013
, “
Linear Aerodynamic Model Identification of a Flapping Wing MAV Based on Flight Test Data
,”
Int. J. Micro Air Veh.
,
5
(
4
), pp.
273
286
.
21.
Caetano
,
J. V.
,
de Visser
,
C. C.
,
Remes
,
B.
,
De Wagter
,
C.
, and
Mulder
,
M.
,
2013
, “
Controlled Flight Maneuvers of a Flapping Wing Micro Air Vehicle: A Step Towards the Delfly II Identification
,”
AIAA
Paper No. 2013-4843.
22.
Armanini
,
S.
,
de Visser
,
C.
,
de Croon
,
G.
, and
Mulder
,
M.
,
2015
, “
Time-Varying Model Identification of Flapping-Wing Vehicle Dynamics Using Flight Data
,”
J. Guid., Control, Dyn.
,
39
(
3
), pp.
526
541
.
23.
Lee
,
J.-S.
, and
Han
,
J.-H.
,
2013
, “
Indoor Flight Testing and Controller Design of Bioinspired Ornithopter
,”
Intelligent Autonomous Systems 12
, Springer-Verlag, Berlin, pp.
825
834
.
24.
Pfeiffer
,
A. T.
,
Lee
,
J.-S.
,
Han
,
J.-H.
, and
Baier
,
H.
,
2010
, “
Ornithopter Flight Simulation Based on Flexible Multi-Body Dynamics
,”
J. Bionic Eng.
,
7
(
1
), pp.
102
111
.
25.
Rose
,
C.
, and
Fearing
,
R. S.
,
2014
, “
Comparison of Ornithopter Wind Tunnel Force Measurements With Free Flight
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
1816
1821
.
26.
Grauer
,
J. A.
, and
Hubbard
,
J. E.
,
2009
, “
Multibody Model of an Ornithopter
,”
J. Guid., Control, Dyn.
,
32
(
5
), pp.
1675
1679
.
27.
Grauer
,
J.
, and
Hubbard
,
J.
,
2010
, “
Modeling of Ornithopter Flight Dynamics for State Estimation and Control
,”
American Control Conference
(
ACC
), Baltimore, MD, June 30–July 2, pp.
524
529
.
28.
Grauer
,
J.
,
2012
, “
Modeling and System Identification of an Ornithopter Flight Dynamics Model
,”
Ph.D. thesis
, University of Maryland, College Park, MD.http://drum.lib.umd.edu/handle/1903/12571
29.
Grauer
,
J.
,
Ulrich
,
E.
,
Hubbard
,
J. E.
,
Pines
,
D.
, and
Humbert
,
J. S.
,
2011
, “
Testing and System Identification of an Ornithopter in Longitudinal Flight
,”
J. Aircr.
,
48
(
2
), pp.
660
667
.
30.
Orlowski
,
C. T.
, and
Girard
,
A. R.
,
2011
, “
Modeling and Simulation of Nonlinear Dynamics of Flapping Wing Micro Air Vehicles
,”
AIAA J.
,
49
(
5
), pp.
969
981
.
31.
Orlowski
,
C. T.
,
2011
, “
Flapping Wing Micro Air Vehicles: An Analysis of the Importance of the Mass of the Wings to Flight Dynamics, Stability, and Control
,”
Ph.D. thesis
, The University of Michigan, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/86350
32.
Kim
,
J.-K.
, and
Han
,
J.-H.
,
2014
, “
A Multibody Approach for 6-DOF Flight Dynamics and Stability Analysis of the Hawkmoth Manduca Sexta
,”
Bioinspiration Biomimetics
,
9
(
1
), p.
016011
.
33.
Deng
,
X.
,
Schenato
,
L.
,
Wu
,
W. C.
, and
Sastry
,
S. S.
,
2006
, “
Flapping Flight for Biomimetic Robotic Insects—Part I: System Modeling
,”
IEEE Trans. Rob.
,
22
(
4
), pp.
776
788
.
34.
Chung
,
S.-J.
, and
Dorothy
,
M.
,
2010
, “
Neurobiologically Inspired Control of Engineered Flapping Flight
,”
J. Guid., Control, Dyn.
,
33
(
2
), pp.
440
453
.
35.
Paranjape
,
A. A.
,
Chung
,
S.-J.
,
Hilton
,
H. H.
, and
Chakravarthy
,
A.
,
2012
, “
Dynamics and Performance of Tailless Micro Aerial Vehicle With Flexible Articulated Wings
,”
AIAA J.
,
50
(
5
), pp.
1177
1188
.
36.
Mahony
,
R.
,
Kumar
,
V.
, and
Corke
,
P.
,
2012
, “
Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor
,”
Rob. Autom. Mag.
,
19
(
3
), pp.
20
32
.
37.
Mellinger
,
D.
,
Michael
,
N.
, and
Kumar
,
V.
,
2014
, “
Trajectory Generation and Control for Precise Aggressive Maneuvers With Quadrotors
,”
Experimental Robotics: The 12th International Symposium on Experimental Robotics
,
Springer
,
Berlin
, pp.
361
373
.
38.
Thomas
,
J.
,
Loianno
,
G.
,
Daniilidis
,
K.
, and
Kumar
,
V.
,
2015
, “
Visual Servoing of Quadrotors for Perching by Hanging From Cylindrical Objects
,”
IEEE Rob. Autom. Lett.
,
1
(1), pp. 57–64.
39.
Desbiens, A. L., and Cutkosky, M. R.,
2010
, “
Landing and Perching on Vertical Surfaces With Microspines for Small Unmanned Air Vehicles
,”
J. Intell. Rob. Sys.
,
57
(1), pp. 313–327.
40.
Abbeel
,
P.
,
Coates
,
A.
, and
Ng
,
A. Y.
,
2010
, “
Autonomous Helicopter Aerobatics Through Apprenticeship Learning
,”
Int. J. Rob. Res.
,
29
(
13
), pp. 1608–1639.
41.
Cutler
,
M. J.
,
2012
, “
Design and Control of an Autonomous Variable-Pitch Quadrotor Helicopter
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/77106
42.
Paranjape
,
A. A.
,
Chung
,
S.-J.
, and
Kim
,
J.
,
2013
, “
Novel Dihedral-Based Control of Flapping-Wing Aircraft With Application to Perching
,”
IEEE Trans. Rob.
,
29
(
5
), pp.
1071
1084
.
43.
Tijmons
,
S.
,
2012
, “
Stereo Vision for Flapping Wing Mavs: Design of an Obstacle Avoidance System
,”
Ph.D. thesis
, TU Delft, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3Af97ac167-38e5-4155-933c-efa2ee179712
44.
De Croon
,
G.
,
De Weerdt
,
E.
,
De Wagter
,
C.
,
Remes
,
B.
, and
Ruijsink
,
R.
,
2012
, “
The Appearance Variation Cue for Obstacle Avoidance
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
529
534
.
45.
De Croon
,
G.
,
De Clercq
,
K.
,
Ruijsink
,
Remes
, and
De Wagter
,
C.
,
2009
, “
Design, Aerodynamics, and Vision-Based Control of the Delfly
,”
Int. J. Micro Air Veh.
,
1
(
2
), pp.
71
97
.
46.
Floreano
,
D.
,
Zufferey
,
J.-C.
,
Srinivasan
,
M. V.
, and
Ellington
,
C.
,
2009
,
Flying Insects and Robots
,
Springer
,
Berlin
.
47.
Dietl
,
J. M.
, and
Garcia
,
E.
,
2008
, “
Ornithopter Trajectory Generation With Stabilization
,”
ASME
Paper No. SMASIS2008-615.
48.
Dietl
,
J. M.
, and
Garcia
,
E.
,
2009
, “
Ornithopter Flight Maneuver Control
,”
ASME
Paper No. SMASIS2009-1323.
49.
Deng
,
X.
,
Schenato
,
L.
, and
Sastry
,
S. S.
,
2006
, “
Flapping Flight for Biomimetic Robotic Insects—Part II: Flight Control Design
,”
IEEE Trans. Rob.
,
22
(
4
), pp.
789
803
.
50.
Baek
,
S. S.
,
Garcia Bermudez
,
F. L.
, and
Fearing
,
R. S.
,
2011
, “
Flight Control for Target Seeking by 13 Gram Ornithopter
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
2674
2681
.
51.
Hong
,
J.
,
Kim
,
S.
,
Paik
,
I.
, and
Park
,
C.
,
2011
, “
Autonomous Flight Test of Flapping Micro Air Vehicle
,”
18th International Conference on Composite Materials
(
ICCM
), Jeju Island, Korea, Aug. 21–26, pp. 1–4.http://www.iccm-central.org/Proceedings/ICCM18proceedings/data/2.%20Oral%20Presentation/Aug26(Friday)/F18%20KASSAT%20(Korean%20Aero-vehicle%20Smart%20Skin%20Antenna%20Technology)%20&%20FMAV%20(Flapping%20Micro%20Air%20Vehicle)/F18-1-AK2024.pdf
52.
Karásek
,
M.
,
Hua
,
A.
,
Nan
,
Y.
,
Lalami
,
M.
, and
Preumont
,
A.
,
2014
, “
Pitch and Roll Control Mechanism for a Hovering Flapping Wing MAV
,”
Int. J. Micro Air Veh.
,
6
(
4
), pp.
253
264
.
53.
Karasek
,
M.
,
2014
, “
Robotic Hummingbird: Design of a Control Mechanism for a Hovering Flapping Wing Micro Air Vehicle
,”
Ph.D. thesis
Université Libre de Bruxelles, Brussels, Belgium.http://scmero.ulb.ac.be/Publications/Thesis/Karasek_2014_thesis.pdf
54.
Jackowski
,
Z. J.
,
2009
, “
Design and Construction of an Autonomous Ornithopter
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.http://groups.csail.mit.edu/robotics-center/public_papers/Jackowski09.pdf
55.
Krashanitsa
,
R. Y.
,
Silin
,
D.
,
Shkarayev
,
S. V.
, and
Abate
,
G.
,
2009
, “
Flight Dynamics of a Flapping-Wing Air Vehicle
,”
Int. J. Micro Air Veh.
,
1
(
1
), pp.
35
49
.
56.
Roberts
,
L.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2014
, “
Autonomus Loitering Control for a Flapping Wing Miniature Aerial Vehicle With Independent Wing Control
,”
ASME
Paper No. DETC2014-34752.
57.
Ramezani
,
A.
,
Shi
,
X.
,
Chung
,
S.-J.
, and
Hutchinson
,
S.
,
2016
, “
Bat bot (b2), a Biologically Inspired Flying Machine
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
3219
3226
.
58.
Hoff
,
J.
,
Ramezani
,
A.
,
Chung
,
S.-J.
, and
Hutchinson
,
S.
,
2016
, “
Synergistic Design of a Bio-Inspired Micro Aerial Vehicle With Articulated Wings
,”
Robotics: Science and Systems Conference
(
RSS
), Ann Arbor, MI, June 18–22, pp.
3219
3226
.http://www.roboticsproceedings.org/rss12/p09.pdf
59.
Kim
,
H.-Y.
,
Lee
,
J.-S.
,
Choi
,
H.-L.
, and
Han
,
J.-H.
,
2014
, “
Autonomous Formation Flight of Multiple Flapping-Wing Flying Vehicles Using Motion Capture System
,”
Aerosp. Sci. Technol.
,
39
, pp.
596
604
.
60.
Rose
,
C.
,
2015
, “
Modeling and Control of an Ornithopter for Non-Equilibrium Maneuvers
,”
Ph.D. thesis
, University of California, Berkeley, CA.http://digitalassets.lib.berkeley.edu/etd/ucb/text/Rose_berkeley_0028E_15875.pdf
61.
Koopmans
,
J.
,
Tijmons
,
S.
,
De Wagter
,
C.
, and
de Croon
,
G.
,
2015
, “
Passively Stable Flapping Flight From Hover to Fast Forward Through Shift in Wing Position
,”
Int. J. Micro Air Veh.
,
7
(
4
), pp.
407
418
.
62.
Holness
,
A. E.
,
Bruck
,
H.
, and
Gupta
,
S.
,
2015
, “
Design of Propeller-Assisted Flapping Wing Air Vehicles for Enhanced Aerodynamic Performance
,”
ASME
Paper No. DETC2015-47577.
63.
Roberts
,
L.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2015
, “
Modeling of Dive Maneuvers in Flapping Wing Unmanned Aerial Vehicles
,”
IEEE International Symposium on Safety, Security, and Rescue Robotics
(
SSRR
), West Lafayette, IN, Oct. 18–20, pp. 1–6.
You do not currently have access to this content.