In this paper, dynamic modeling of cable-driven parallel robots (CDPRs) is addressed where each cable length is subjected to variations during operation. It is focusing on an original formulation of cable tension, which reveals a softening behavior when strains become large. The dynamic modulus of cable elasticity is experimentally identified through dynamic mechanical analysis (DMA). Numerical investigations carried out on suspended CDPRs with different sizes show the effect of the proposed tension formulation on the dynamic response of the end-effector.

References

1.
Alamdari
,
A.
, and
Krovi
,
V.
,
2016
, “
Design and Analysis of a Cable-Driven Articulated Rehabilitation System for Gait Training
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051018
.
2.
Homma
,
K.
,
Fukuda
,
O.
,
Sugawara
,
J.
,
Nagata
,
Y.
, and
Usuba
,
M.
,
2003
, “
A Wire-Driven Leg Rehabilitation System: Development of a 4-DOF Experimental System
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Kobe, Japan, July 20–24, pp.
908
913
.
3.
Merlet
,
J.-P.
, and
Daney
,
D.
,
2010
, “
A Portable, Modular Parallel Wire Crane for Rescue Operations
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
2834
2839
.
4.
Kawamura
,
S.
,
Ida
,
M.
,
Wada
,
T.
, and
Wu
,
J.-L.
,
1995
, “
Development of a Virtual Sports Machine Using a Wire Drive System—A Trial of Virtual Tennis
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, Human Robot Interaction and Cooperative Robots
(
IROS
), Pittsburgh, PA, Aug. 5–9, pp.
111
116
.
5.
Holland
,
C. S.
, and
Cannon
,
D. J.
,
2004
, “
Cable Array Robot for Material Handling
,” Penn State Research Foundation, University Park, PA, U.S. Patent No.
6,826,452
.
6.
Gagliardini
,
L.
,
Caro
,
S.
,
Gouttefarde
,
M.
, and
Girin
,
A.
,
2016
, “
Discrete Reconfiguration Planning for Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
100
, pp.
313
337
.
7.
Babaghasabha
,
R.
,
Khosravi
,
M. A.
, and
Taghirad
,
H. D.
,
2015
, “
Adaptive Robust Control of Fully-Constrained Cable Driven Parallel Robots
,”
Mechatronics
,
25
, pp.
27
36
.
8.
Diao
,
X.
,
2015
, “
Singularity Analysis of Fully-Constrained Cable-Driven Parallel Robots With Seven Cables
,”
IEEE International Conference on Mechatronics and Automation
(
ICMA
), Beijing, China, Aug. 2–5, pp.
1537
1541
.
9.
Abbasnejad
,
G.
, and
Carricato
,
M.
,
2015
, “
Direct Geometrico-Static Problem of Underconstrained Cable-Driven Parallel Robots With Cables
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
468
478
.
10.
Alp
,
A. B.
, and
Agrawal
,
S. K.
,
2002
, “
Cable Suspended Robots: Design, Planning and Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Washington, DC, May 11–15, pp.
4275
4280
.
11.
Carricato
,
M.
, and
Merlet
,
J.-P.
,
2010
, “
Geometrico-Static Analysis of Under-Constrained Cable-Driven Parallel Robots
,”
Advances in Robot Kinematics: Motion in Man and Machine
,
Springer
, Dordrecht, The Netherlands, pp.
309
319
.
12.
Carricato
,
M.
, and
Merlet
,
J.-P.
,
2013
, “
Stability Analysis of Underconstrained Cable-Driven Parallel Robots
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
288
296
.
13.
Kozak
,
K.
,
Zhou
,
Q.
, and
Wang
,
J.
,
2006
, “
Static Analysis of Cable-Driven Manipulators With Non-Negligible Cable Mass
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
425
433
.
14.
Arsenault
,
M.
,
2013
, “
Workspace and Stiffness Analysis of a Three-Degree-of-Freedom Spatial Cable-Suspended Parallel Mechanism While Considering Cable Mass
,”
Mech. Mach. Theory
,
66
, pp.
1
13
.
15.
Irvine
,
H. M.
,
1992
,
Cable Structures
,
Dover Publications
,
Mineola, NY
.
16.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2015
, “
Static and Dynamic Stiffness Analyses of Cable-Driven Parallel Robots With Non-Negligible Cable Mass and Elasticity
,”
Mech. Mach. Theory
,
85
, pp.
64
81
.
17.
Diao
,
X.
, and
Ma
,
O.
,
2009
, “
Vibration Analysis of Cable-Driven Parallel Manipulators
,”
Multibody Syst. Dyn.
,
21
(
4
), pp.
347
360
.
18.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2014
, “
Elastodynamic Analysis of Cable-Driven Parallel Manipulators Considering Dynamic Stiffness of Sagging Cables
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
4055
4060
.
19.
Khosravi
,
M. A.
, and
Taghirad
,
H. D.
,
2015
, “
Dynamic Analysis and Control of Fully-Constrained Cable Robots With Elastic Cables: Variable Stiffness Formulation
,”
Cable-Driven Parallel Robots
,
Springer
, Cham, Switzerland, pp.
161
177
.
20.
Barrette
,
G.
, and
Gosselin
,
C. M.
,
2005
, “
Determination of the Dynamic Workspace of Cable-Driven Planar Parallel Mechanisms
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
242
248
.
21.
Du
,
J.
, and
Agrawal
,
S. K.
,
2015
, “
Dynamic Modeling of Cable-Driven Parallel Manipulators With Distributed Mass Flexible Cables
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021020
.
22.
Babaz
,
M.
,
Jezequel
,
L.
,
Lamarque
,
C.-H.
, and
Perrard
,
P.
,
2016
, “
Unusual Expression of Tension of a Massless Cable With Application to the Oscillations of a Mass Suspended to a Cable With a Variable Length
,”
J. Sound Vib.
,
363
, pp.
446
459
.
23.
Gagliardini
,
L.
,
Caro
,
S.
,
Gouttefarde
,
M.
, and
Girin
,
A.
,
2015
, “
A Reconfiguration Strategy for Reconfigurable Cable-Driven Parallel Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
1613
1620
.
24.
Hui
,
L.
,
2015
, “
A Giant Sagging-Cable-Driven Parallel Robot of Fast Telescope: Its Tension-Feasible Workspace of Orientation and Orientation Planning
,”
14th IFToMM World Congress
, Taipei, Taiwan, Oct. 25–30, pp.
373
381
.
25.
Liu
,
Z.
,
Tang
,
X.
,
Shao
,
Z.
,
Wang
,
L.
, and
Tang
,
L.
, 2013, “
Research on Longitudinal Vibration Characteristic of the Six-Cable-Driven Parallel Manipulator in FAST
,”
Adv. Mech. Eng.
,
5
, p. 547416.
26.
Starossek
,
U.
,
1991
, “
Dynamic Stiffness Matrix of Sagging Cable
,”
J. Eng. Mech.
,
117
(
12
), pp.
2815
2828
.
27.
Zi
,
B.
,
Duan
,
B.
,
Du
,
J.
, and
Bao
,
H.
,
2008
, “
Dynamic Modeling and Active Control of a Cable-Suspended Parallel Robot
,”
Mechatronics
,
18
(
1
), pp.
1
12
.
28.
Bedoustani
,
Y. B.
,
Taghirad
,
H. D.
, and
Aref
,
M. M.
,
2008
, “
Dynamics Analysis of a Redundant Parallel Manipulator Driven by Elastic Cables
,”
Tenth International Conference on Control, Automation, Robotics and Vision
(
ICARCV
), Hanoi, Vietnam, Dec. 17–20, pp.
536
542
.
29.
Miyasaka
,
M.
,
Haghighipanah
,
M.
,
Li
,
Y.
, and
Hannaford
,
B.
,
2016
, “
Hysteresis Model of Longitudinally Loaded Cable for Cable Driven Robots and Identification of the Parameters
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
4051
4057
.
30.
Miermeister
,
P.
,
Kraus
,
W.
,
Lan
,
T.
, and
Pott
,
A.
,
2015
, “
An Elastic Cable Model for Cable-Driven Parallel Robots Including Hysteresis Effects
,”
Cable-Driven Parallel Robots
,
Springer
, Cham, Switzerland, pp.
17
28
.
31.
Menard
,
K. P.
,
2008
,
Dynamic Mechanical Analysis: A Practical Introduction
,
CRC Press
, Boca Raton, FL.
32.
Haddad
,
Y. M.
,
1995
,
Viscoelasticity of Engineering Materials
,
Chapman & Hall
,
London
.
33.
Carfagni
,
M.
,
Lenzi
,
E.
, and
Pierini
,
M.
,
1998
, “
The Loss Factor as a Measure of Mechanical Damping
,”
Proc. SPIE
,
3243
, pp.
580
584
.
34.
Weber
,
X.
,
Cuvillon
,
L.
, and
Gangloff
,
J.
,
2014
, “
Active Vibration Canceling of a Cable-Driven Parallel Robot Using Reaction Wheels
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, IL, Sept. 14–18, pp.
1724
1729
.
35.
Merlet
,
J.-P.
,
2017
, “
Simulation of Discrete-Time Controlled Cable-Driven Parallel Robots on a Trajectory
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
675
688
.
You do not currently have access to this content.