Abstract

A new gene detection technique that is fast, inexpensive, and easy-to-use is urgently needed in hospitals, clinics, and laboratories without access to expensive equipments. The lack of a practical, minimally invasive, and economical method constitutes the main impediment to the promotion of genetic medicine in developing countries. Radiofrequency scattering parameters are an inexpensive gene sensor potentially capable of noninvasively identifying biological materials. They represent a quantitative value for the electromagnetic reflection/transmission characteristics of certain molecular markers in a given frequency domain. The S21 parameter is the difference between the signal received and that transmitted. The aim of this study is to evaluate the S21 transmittance parameters (magnitude and phase) as an indirect impedance measurement for detecting the label-free complementary deoxyribonucleic acid (cDNA) amplification of the 16S ribosomal subunit gene. S21 values showed differences associated with distinct cDNA concentrations. Hence, this technique could possibly facilitate the design of an inexpensive, label-free, and easy-to-use gene sensor.

References

1.
Liu
,
R. H.
,
Yang
,
J.
,
Lenigk
,
R.
,
Bonanno
,
J.
, and
Grodzinski
,
P.
,
2004
, “
Self-Contained, Fully Integrated Biochip for Sample Preparation, Polymerase Chain Reaction Amplification, and DNA Microarray Detection
,”
Anal. Chem.
,
76
(
7
), pp.
1824
1831
.10.1021/ac0353029
2.
Pan
,
Y.
,
Sonn
,
G. A.
,
Sin
,
M. L.
,
Mach
,
K. E.
,
Shih
,
M. C.
,
Gau
,
V.
,
Wong
,
P. K.
, and
Liao
,
J. C.
,
2010
, “
Electrochemical Immunosensor Detection of Urinary Lactoferrin in Clinical Samples for Urinary Tract Infection Diagnosis
,”
Biosens. Bioelectron.
,
26
(
2
), pp.
649
654
.10.1016/j.bios.2010.07.002
3.
Mach
,
K. E.
,
Du
,
C. B.
,
Phull
,
H.
,
Haake
,
D. A.
,
Shih
,
M. C.
,
Baron
,
E. J.
, and
Liao
,
J. C.
,
2009
, “
Multiplex Pathogen Identification for Polymicrobial Urinary Tract Infections Using Biosensor Technology: A Prospective Clinical Study
,”
J. Urol.
,
182
(
6
), pp.
2735
2741
.10.1016/j.juro.2009.08.028
4.
Gabig-Ciminska
,
M.
,
2006
, “
Developing Nucleic Acid-Based Electrical Detection Systems
,”
Microb. Cell Fact.
,
5
(
1
), pp.
1
9
.10.1186/1475-2859-5-9
5.
Mohan
,
R.
,
Mach
,
K. E.
,
Bercovici
,
M.
,
Pan
,
Y.
,
Dhulipala
,
L.
,
Wong
,
P. K.
, and
Liao
,
J. C.
,
2011
, “
Clinical Validation of Integrated Nucleic Acid and Protein Detection on an Electrochemical Biosensor Array for Urinary Tract Infection Diagnosis
,”
PLoS One
,
6
(
10
), pp.
1
8
.10.1371/journal.pone.0026846
6.
Koets
,
M.
,
Van Der Wijk
,
T.
,
Van Eemeren
,
J. T. W. M.
,
Van Amerongen
,
A.
, and
Prins
,
M. W. J.
,
2009
, “
Rapid DNA Multi-Analyte Immunoassay on a Magneto-Resistance Biosensor
,”
Biosens. Bioelectron.
,
24
(
7
), pp.
1893
1898
.10.1016/j.bios.2008.09.023
7.
Kavita
,
V.
,
2017
, “
DNA Biosensors-A Review
,”
J Bioeng. Biomed. Sci.
,
7
, pp.
1
5
.10.4172/2155-9538.1000222
8.
Zhang
,
D.
,
Yan
,
Y.
,
Li
,
Q.
,
Yu
,
T.
,
Cheng
,
W.
,
Wang
,
L.
,
Ju
,
H.
, and
Ding
,
S.
,
2012
, “
Label-Free and High-Sensitive Detection of Salmonella Using a Surface Plasmon Resonance DNA-Based Biosensor
,”
J. Biotechnol.
,
160
(
3–4
), pp.
123
128
.10.1016/j.jbiotec.2012.03.024
9.
Luo
,
C.
,
Tang
,
H.
,
Cheng
,
W.
,
Yan
,
L.
,
Zhang
,
D.
,
Ju
,
H.
, and
Ding
,
S.
,
2013
, “
A Sensitive Electrochemical DNA Biosensor for Specific Detection of Enterobacteriaceae Bacteria by Exonuclease III-Assisted Signal Amplification
,”
Biosens. Bioelectron.
,
48
, pp.
132
137
.10.1016/j.bios.2013.03.084
10.
Muangsuwan
,
W.
,
Promptmas
,
C.
,
Jeamsaksiri
,
W.
,
Bunjongpru
,
W.
,
Srisuwan
,
A.
,
Hruanun
,
C.
,
Poyai
,
A.
,
Wongchitrat
,
P.
, and
Yasawong
,
M.
,
2016
, “
Development of an immunoFET Biosensor for the Detection of Biotinylated PCR Product
,”
Heliyon
,
3
, pp.
1
17
.10.1016/j.heliyon.2016.e00188
11.
Velusamy
,
V.
,
Arshak
,
K.
,
Korostynska
,
O.
,
Oliwa
,
K.
, and
Adley
,
C.
,
2009
, “
Design of a Real Time Biorecognition System to Detect Foodborne Pathogens-DNA Biosensor
,”
IEEE
Sensors Applications Symposium, New Orleans, LA, Feb. 17–19, pp.
38
42
.10.1109/SAS.2009.4801773
12.
Elsholz
,
B.
,
Nitsche
,
A.
,
Achenbach
,
J.
,
Ellerbrok
,
H.
,
Blohm
,
L.
,
Albers
,
J.
,
Pauli
,
G.
,
Hintsche
,
R.
, and
Wörl
,
R.
,
2009
, “
Electrical Microarrays for Highly Sensitive Detection of Multiplex PCR Products From Biological Agents
,”
Biosens. Bioelectron.
,
24
(
6
), pp.
1737
1743
.10.1016/j.bios.2008.09.003
13.
Díaz-Cartagena
,
D. C.
,
Gomez-Moreno
,
R.
,
Cunci
,
L.
,
Diaz-Diaz
,
E. M.
,
Cunci
,
R.
,
Baerga-Ortiz
,
A. J.
,
Watkins
,
J. J.
, and
Cabrera
,
C. R.
,
2014
, “
Real-Time Impedimetric Detection of DNA Amplification by PCR Using Electrochemical Impedance Spectroscopy
,”
ECS Meet. Abstr.,
23(3), p.
658.
http://ma.ecsdl.org/content/MA2014-02/10/658.abstract
14.
Yamanaka
,
K.
,
Saito
,
M.
,
Kondoh
,
K.
,
Hossain
,
M. M.
,
Koketsu
,
R.
,
Sasaki
,
T.
,
Nagatani
,
N.
,
Ikuta
,
K.
, and
Tamiya
,
E.
,
2011
, “
Rapid Detection for Primary Screening of Influenza a Virus: Microfluidic RT-PCR Chip and Electrochemical DNA Sensor
,”
Analyst
,
136
(
10
), pp.
2064
2068
.10.1039/c1an15066a
15.
Ahrberg
,
C. D.
,
Ilic
,
B. R.
,
Manz
,
A.
, and
Neužil
,
P.
,
2016
, “
Handheld Real-Time PCR Device
,”
Lab Chip
,
16
(
3
), pp.
586
592
.10.1039/C5LC01415H
16.
Balasingham
,
S. V.
,
Davidsen
,
T.
,
Szpinda
,
I.
,
Frye
,
S. A.
, and
Tønjum
,
T.
,
2009
, “
Molecular Diagnostics in Tuberculosis
,”
Mol. Diagn. Ther.
,
13
(
3
), pp.
137
151
.10.1007/BF03256322
17.
Hiyari
,
S.
, and
Bennett
,
K. M.
,
2011
, “
Dental Diagnostics: Molecular Analysis of Oral Biofilms
,”
Am. Dent. Hyg. Assoc.
,
85
(
4
), pp.
256
263
.https://www.ncbi.nlm.nih.gov/pubmed/22309866
18.
Moschioni
,
M.
,
Pansegrau
,
W.
, and
Barocchi
,
M. A.
,
2009
, “
Adhesion Determinants of the Streptococcus Species
,”
Microb. Biotechnol.
,
3
(
4
), pp.
370
388
.10.1111/j.1751-7915.2009.00138.x
19.
Starke
,
E. M.
,
Smoot
,
J. C.
,
Wu
,
J. H.
,
Liu
,
W. T.
,
Chandler
,
D.
, and
Stahl
,
D. A.
,
2007
, “
Saliva‐Based Diagnostics Using 16S rRNA Microarrays and Microfluidics
,”
Ann. New York Acad. Sci.
,
1098
(
1
), pp.
345
361
.10.1196/annals.1384.007
20.
Doolittle
,
W. F.
,
1999
, “
Phylogenetic Classification and the Universal Tree
,”
Science
,
284
(
5423
), pp.
2124
2128
.10.1126/science.284.5423.2124
21.
Rushworth
,
J. V.
, and
Hirst
,
N. A.
,
2013
,
Impedimetric Biosensors for Medical Applications: Current Progress and Challenges
,
Momentum Press
, New York.
22.
Gerasimova
,
Y. V.
, and
Kolpashchikov
,
D. M.
,
2013
, “
Detection of Bacterial 16S rRNA Using a Molecular Beacon-Based X Sensor
,”
Biosens. Bioelectron.
,
41
, pp.
386
390
.10.1016/j.bios.2012.08.058
You do not currently have access to this content.