Abstract

Significant research has been done in the past decade for the development of magnetic resonance imaging (MRI) guided needle guide (NG) systems for prostate intervention. Most of these systems have been restricted to application in the lab environment with lack of progress toward clinical application. Bulky and complex designs can be attributed to this practice. These systems also demand complex technical setup and usage procedures, which require extra technical personnel during the intervention in addition to specialized training for physicians. Moreover, “device-to-image” registration, essential for accurate and precise targeting, further complicates the overall process while increasing total time for intervention. In order to address these limitations, a simplified, MRI-guided, transperineal prostate biopsy NG system was designed and developed for rapid adoption into the clinical environment. The system consists of a NG device and a software toolkit. It does not require any special intraprocedural technical expertise or dedicated training. Also, to simplify and shorten total procedure time, the device uses the unique concept of “fixed coordinate device” eliminating the need for any device-to-image registration making it clinically friendly. To verify the NG design along with the registration free feature, image quality tests and agar phantom-based targeting experiments were performed under the guidance of 3T MRI scanner. The imaging tests resulted in a distortion of less than 1% in presence of the device and an average change of 1.3% in signal-to-noise ratio. For targeting experiments, maximum in-plane error distance of 3.8 mm with a mean of 2.2 mm and standard deviation of 0.8 mm was observed. The results show that an MRI-compatible simplified intervention device without the need of device-to-image registration is technically feasible.

References

References
1.
Siegel
,
R. L.
,
Miller
,
K. D.
, and
Jemal
,
A.
,
2020
, “
Cancer Statistics, 2020
,”
Ca-Cancer J. Clin.
,
70
(
1
), pp.
7
30
.10.3322/caac.21590
2.
Jones
,
D.
,
Friend
,
C.
,
Dreher
,
A.
,
Allgar
,
V.
, and
Macleod
,
U.
,
2018
, “
The Diagnostic Test Accuracy of Rectal Examination for Prostate Cancer Diagnosis in Symptomatic Patients: A Systematic Review
,”
BMC Fam. Pract.
,
19
(
1
), pp. 1–6. 10.1186/s12875-018-0765-y
3.
Eastham
,
J.
,
2017
, “
Prostate Cancer Screening
,”
Invest. Clin. Urol.
,
58
(
4
), p.
217
.10.4111/icu.2017.58.4.217
4.
Ankerst
,
D. P.
,
Miyamoto
,
R.
,
Nair
,
P. V.
,
Pollock
,
B. H.
,
Thompson
,
I. M.
, and
Parekh
,
D. J.
,
2009
, “
Yearly Prostate Specific Antigen and Digital Rectal Examination Fluctuations in a Screened Population
,”
J. Urol.
,
181
(
5
), pp.
2071
2076
.10.1016/j.juro.2009.01.029
5.
Brown
,
A. M.
,
Elbuluk
,
O.
,
Mertan
,
F.
,
Sankineni
,
S.
,
Margolis
,
D. J.
,
Wood
,
B. J.
,
Pinto
,
P. A.
,
Choyke
,
P. L.
, and
Turkbey
,
B.
,
2015
, “
Recent Advances in Image-Guided Targeted Prostate Biopsy
,”
Abdom. Imaging
,
40
(
6
), pp.
1788
1799
.10.1007/s00261-015-0353-8
6.
Jayadevan
,
R.
,
Zhou
,
S.
,
Priester
,
A. M.
,
Delfin
,
M.
, and
Marks
,
L. S.
,
2019
, “
Use of MRI-Ultrasound Fusion to Achieve Targeted Prostate Biopsy
,”
J. Visualized Exp.
, (
146
), p. e59231.10.3791/59231
7.
Sartor
,
A. O.
,
Hricak
,
H.
,
Wheeler
,
T. M.
,
Coleman
,
J.
,
Penson
,
D. F.
,
Carroll
,
P. R.
,
Rubin
,
M. A.
, and
Scardino
,
P. T.
,
2008
, “
Evaluating Localized Prostate Cancer and Identifying Candidates for Focal Therapy
,”
Urology
,
72
(
6
), pp.
S12
S24
.10.1016/j.urology.2008.10.004
8.
Filderman
,
P. S.
, and
Jacobs
,
S. C.
,
1994
, “
Prostatic Ultrasound in the Patient Without a Rectum
,”
Urology
,
43
(
5
), pp.
722
724
.10.1016/0090-4295(94)90197-X
9.
Presti
,
J. C.
,
O'Dowd
,
G. J.
,
Miller
,
M. C.
,
Mattu
,
R.
, and
Veltri
,
R. W.
,
2003
, “
Extended Peripheral Zone Biopsy Schemes Increase Cancer Detection Rates and Minimize Variance in Prostate Specific Antigen and Age Related Cancer Rates: Results of a Community Multi-Practice Study
,”
J. Urol.
,
169
(
1
), pp.
125
129
.10.1016/S0022-5347(05)64051-7
10.
Roehl
,
K. A.
,
Antenor
,
J. O. A. N. N. V.
, and
Catalona
,
W. J.
,
2002
, “
Serial Biopsy Results in Prostate Cancer Screening Study
,”
J. Urol.
,
167
(
6
), pp.
2435
2439
.10.1016/S0022-5347(05)64999-3
11.
Beyersdorff
,
D.
,
Taupitz
,
M.
,
Winkelmann
,
B.
,
Fischer
,
T.
,
Lenk
,
S.
,
Loening
,
S. A.
, and
Hamm
,
B.
,
2002
, “
Patients With a History of Elevated Prostate-Specific Antigen Levels and Negative Transrectal US–Guided Quadrant or Sextant Biopsy Results: Value of MR Imaging
,”
Radiology
,
224
(
3
), pp.
701
706
.10.1148/radiol.2243011553
12.
Tempany
,
C.
,
Straus
,
S.
,
Hata
,
N.
, and
Haker
,
S.
,
2008
, “
MR-Guided Prostate Interventions
,”
J. Magn. Reson. Imaging
,
27
(
2
), pp.
356
367
.10.1002/jmri.21259
13.
Kulkarni
,
P.
,
Sikander
,
S.
,
Biswas
,
P.
,
Frawley
,
S.
, and
Song
,
S.-E.
,
2019
, “
Review of Robotic Needle Guide Systems for Percutaneous Intervention
,”
Ann. Biomed. Eng.
, 47(12), pp.
2489
2513
.10.1007/s10439-019-02319-9
14.
Stoianovici
,
D.
,
Kim
,
C.
,
Petrisor
,
D.
,
Jun
,
C.
,
Lim
,
S.
,
Ball
,
M. W.
,
Ross
,
A.
,
Macura
,
K. J.
, and
Allaf
,
M. E.
,
2017
, “
MR Safe Robot, FDA Clearance, Safety and Feasibility of Prostate Biopsy Clinical Trial
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
115
126
.10.1109/TMECH.2016.2618362
15.
Monfaredi
,
R.
,
Cleary
,
K.
, and
Sharma
,
K.
,
2018
, “
MRI Robots for Needle-Based Interventions: Systems and Technology
,”
Ann. Biomed. Eng.
,
46
(
10
), pp.
1479
1497
.10.1007/s10439-018-2075-x
16.
BenMessaoud
,
C.
,
Kharrazi
,
H.
, and
MacDorman
,
K. F.
,
2011
, “
Facilitators and Barriers to Adopting Robotic-Assisted Surgery: Contextualizing the Unified Theory of Acceptance and Use of Technology
,”
PLoS One
,
6
(
1
), p.
e16395
.10.1371/journal.pone.0016395
17.
McGuinness
,
L.
, and
Prasad Rai
,
B.
,
2018
, “
Robotics in Urology
,”
Ann. R. Coll. Surg. Engl.
,
100
(
6
), pp.
38
44
.10.1308/rcsann.supp1.38
18.
Tokuda
,
J.
,
Song
,
S. E.
,
Tuncali
,
K.
,
Tempany
,
C.
, and
Hata
,
N.
,
2013
, “
Configurable Automatic Detection and Registration of Fiducial Frames for Device-to-Image Registration in MRI-Guided Prostate Interventions
,” Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, Vol. 8151), Springer, Nagoya, Japan, pp.
355
362
.
19.
Fütterer
,
J. J.
,
Misra
,
S.
, and
MacUra
,
K. J.
,
2010
, “
MRI of the Prostate: Potential Role of Robots
,”
Imaging Med.
,
2
(
5
), pp.
583
592
.10.2217/iim.10.46
20.
Mathematics and Physics of Emerging Biomedical Imaging,
1996
, “Image-Guided Minimally Invasive Diagnostic and Therapeutic Interventional Procedures,”
Mathematics and Physics of Emerging Biomedical Imaging
, National Acamedies Press, Washington, DC, pp. 167–186
.https://www.ncbi.nlm.nih.gov/books/NBK232483/#:~:text=Chapter%2012Image%2DGuided%20Minimally%20Invasive%20Diagnostic%20and%20Therapeutic%20Interventional%20Procedures&text=Image%2Dguided%20therapy%20is%20a,%2C%20and%20robot%2Dassisted%20surgery
21.
Tokuda
,
J.
,
Tuncali
,
K.
,
Iordachita
,
I.
,
Song
,
S.-E.
,
Fedorov
,
A.
,
Oguro
,
S.
,
Lasso
,
A.
,
Fennessy
,
F. M.
,
Tempany
,
C. M.
, and
Hata
,
N.
,
2012
, “
In-Bore Setup and Software for 3T MRI-Guided Transperineal Prostate Biopsy
,”
Phys. Med. Biol.
,
57
(
18
), pp.
5823
5840
.10.1088/0031-9155/57/18/5823
22.
Kulkarni
,
P.
,
Sumit
,
L.
,
Sikander
,
S.
,
Biswas
,
P.
,
Cornnell
,
H.
,
Bagci
,
U.
,
Burt
,
J.
, and
Song
,
S.
-E.,
2019
, “MRI-Guided, Transperineal Prostate Biopsy Using Fixed Coordinate Needle Guide: Initial Feasibility Study,”
ASME
Paper No. DMD2019-3281.10.1115/DMD2019-3281
23.
Song
,
S. E.
,
Tokuda
,
J.
,
Tuncali
,
K.
,
Tempany
,
C. M.
,
Zhang
,
E.
, and
Hata
,
N.
,
2013
, “
Development and Preliminary Evaluation of a Motorized Needle Guide Template for MRI-Guided Targeted Prostate Biopsy
,”
IEEE Trans. Biomed. Eng.
, 60(11), pp.
3019
3027
.10.1109/TBME.2013.2240301
24.
Su
,
H.
,
Shang
,
W.
,
Cole
,
G.
,
Li
,
G.
,
Harrington
,
K.
,
Camilo
,
A.
,
Tokuda
,
J.
,
Tempany
,
C. M.
,
Hata
,
N.
, and
Fischer
,
G. S.
,
2015
, “
Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy
,”
IEEE/ASME Trans. Mechatronics
,
20
(
4
), pp.
1920
1932
.10.1109/TMECH.2014.2359413
25.
National Electrical Manufacturers Association
,
2015
, “
Determination of Two-Dimensional Geometric Distortion in Diagnostic Magnetic Resonance Images
,” National Electrical Manufacturers Association, Arlington, VA, Standard No.
NEMA MS 2-2008
.https://www.nema.org/standards/view/determination-of-two-dimensional-geometric-distortion-in-diagnostic-magnetic-resonance-images
26.
NEMA Standards Publication,
2015
, “
Determination of Signal-to-Noise Ratio (SNR) in Diagnostic Magnetic Resonance Imaging
,” National Electrical Manufacturers Association, Arlington, VA, Standard No.
MS 1-2008
.https://www.nema.org/Standards/view/Determination-of-Signal-to-Noise-Ratio-in-Diagnostic-Magnetic-Resonance-Imaging
27.
Song
,
S.-E.
,
Tuncali
,
K.
,
Tokuda
,
J.
,
Fedorov
,
A.
,
Penzkofer
,
T.
,
Fennessy
,
F.
,
Tempany
,
C.
,
Yoshimitsu
,
K.
,
Magill
,
J.
, and
Hata
,
N.
,
2014
, “
Workflow Assessment of 3T MRI-Guided Transperineal Targeted Prostate Biopsy Using a Robotic Needle Guidance
,”
Medical Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling
, Vol.
9036
, SPIE, San Diego, CA, p.
903612
.
This content is only available via PDF.
You do not currently have access to this content.