Abstract

This paper deals with haptic devices for master–slave telesurgical applications. Namely, a stiffness model fitting methodology and its fine-tuning are proposed based on experimental results. In particular, the proposed procedure is based on virtual joint structural stiffness modeling to be applied in time-efficient compliance compensation strategies. A specific case study is discussed by referring to the HISS haptic device that has been developed and built at Izmir Institute of Technology. Two different experimental setups are designed for stiffness evaluation tests. Experimental results are discussed to demonstrate their implementation in the proposed methodology for the fine-tuning of stiffness model.

References

1.
Zahiri
,
M.
,
Booton
,
R.
,
Siu
,
K.-C.
, and
Nelson
,
C. A.
,
2017
, “
Design and Evaluation of a Portable Laparoscopic Training System Using Virtual Reality
,”
ASME J. Med. Devices
,
11
(
1
), p.
011002
.10.1115/1.4034881
2.
Prince
,
S. W.
,
Kang
,
C.
,
Simonelli
,
J.
,
Lee
,
Y.-H.
,
Gerber
,
M. J.
,
Lim
,
C.
,
Chu
,
K.
,
Dutson
,
E. P.
, and
Tsao
,
T.-C.
,
2020
, “
A Robotic System for Telementoring and Training in Laparoscopic Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
16
(
2
), p.
e2040
.10.1002/rcs.2040
3.
Lim
,
J. H.
,
Lee
,
W. J.
,
Park
,
D. W.
,
Yea
,
H. J.
,
Kim
,
S. H.
, and
Kang
,
C. M.
,
2017
, “
Robotic Cholecystectomy Using Revo-i Model MSR-5000, the Newly Developed Korean Robotic Surgical System: A Preclinical Study
,”
Surg. Endoscopy
,
31
(
8
), pp.
3391
3397
.10.1007/s00464-016-5357-0
4.
D'Auria
,
D.
, and
Persia
,
F.
,
2017
, “
A Collaborative Robotic Cyber Physical System for Surgery Applications
,”
IEEE International Conference on Information Reuse and Integration (IRI)
,
San Diego, CA
, Aug. 4–6, pp.
79
83
.10.1109/IRI.2017.84
5.
Palep
,
J. H.
,
2009
, “
Robotic Assisted Minimally Invasive Surgery
,”
J. Minimal Access Surg.
,
5
(
1
), p.
1
.10.4103/0972-9941.51313
6.
Chapman
,
W. H. H.
,
Albrecht
,
R. J.
,
Kim
,
V. B.
,
Young
,
J. A.
, and
Chitwood
,
W. R.
,
2002
, “
Computer-Assisted Laparoscopic Splenectomy With the da VinciTM Surgical Robot
,”
J. Laparoendosc. Adv. Surg. Tech.
,
12
(
3
), pp.
155
159
.10.1089/10926420260188038
7.
Antonakoglou
,
K.
,
Xu
,
X.
,
Steinbach
,
E.
,
Mahmoodi
,
T.
, and
Dohler
,
M.
,
2018
, “
Toward Haptic Communications Over the 5G Tactile Internet
,”
IEEE Commun. Surv. Tutorials
,
20
(
4
), pp.
3034
3059
.10.1109/COMST.2018.2851452
8.
Simsek
,
M.
,
Aijaz
,
A.
,
Dohler
,
M.
,
Sachs
,
J.
, and
Fettweis
,
G.
,
2016
, “
5G-Enabled Tactile Internet
,”
IEEE J. Sel. Areas Commun.
,
34
(
3
), pp.
460
473
.10.1109/JSAC.2016.2525398
9.
Tholey
,
G.
, and
Desai
,
J. P.
,
2008
, “
A Compact and Modular Laparoscopic Grasper With Tridirectional Force Measurement Capability
,”
ASME J. Med. Devices
,
2
(
3
), p.
031001
.10.1115/1.2952817
10.
Talasaz
,
A.
,
Luisa Trejos
,
A.
,
Perreault
,
S.
,
Bassan
,
H.
, and
Patel
,
R. V.
,
2014
, “
A Dual-Arm 7-Degrees-of-Freedom Haptics-Enabled Teleoperation Test Bed for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
8
(
4
), p.
041004
.10.1115/1.4026984
11.
Carbone
,
G.
,
2013
, “
Stiffness Analysis for Grasping Tasks
,”
Grasping in Robotics
,
Springer
,
Dordrecht, The Netherlands
, pp.
17
55
.
12.
Mahvash
,
M.
, and
Dupont
,
P. E.
,
2011
, “
Stiffness Control of Surgical Continuum Manipulators
,”
IEEE Trans. Rob.
,
27
(
2
), pp.
334
345
.10.1109/TRO.2011.2105410
13.
Mattos
,
L. S.
,
Caldwell
,
D. G.
,
Peretti
,
G.
,
Mora
,
F.
,
Guastini
,
L.
, and
Cingolani
,
R.
,
2016
, “
Microsurgery Robots: Addressing the Needs of High-Precision Surgical Interventions
,”
Swiss Med. Wkly.
,
146
(
4344
), p. w14375.https://smw.ch/article/doi/smw.2016.14375
14.
Mekaouche
,
A.
,
Chapelle
,
F.
, and
Balandraud
,
X.
,
2015
, “
FEM-Based Generation of Stiffness Maps
,”
IEEE Trans. Rob.
,
31
(
1
), pp.
217
222
.10.1109/TRO.2015.2392351
15.
Pashkevich
,
A.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2009
, “
Stiffness Analysis of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
44
(
5
), pp.
966
982
.10.1016/j.mechmachtheory.2008.05.017
16.
Júnior
,
G. S.
,
Carvalho
,
J. C. M.
, and
Gonçalves
,
R. S.
,
2016
, “
Stiffness Analysis of Multibody Systems Using Matrix Structural Analysis-MSA
,”
Robotica
,
34
(
10
), pp.
2368
2385
.10.1017/S0263574715000016
17.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2019
, “
Fundamentals of Manipulator Stiffness Modeling Using Matrix Structural Analysis
,”
Mech. Mach. Theory
,
133
, pp.
365
394
.10.1016/j.mechmachtheory.2018.11.023
18.
Görgülü
,
İ.
,
Carbone
,
G.
, and
Dede
,
M. C.
,
2020
, “
Time Efficient Stiffness Model Computation for a Parallel Haptic Mechanism Via the Virtual Joint Method
,”
Mech. Mach. Theory
,
143
, p.
103614
.10.1016/j.mechmachtheory.2019.103614
19.
Yu
,
G.
,
Wang
,
L.
,
Wu
,
J.
,
Wang
,
D.
, and
Hu
,
C.
,
2018
, “
Stiffness Modeling Approach for a 3-DOF Parallel Manipulator With Consideration of Nonlinear Joint Stiffness
,”
Mech. Mach. Theory
,
123
, pp.
137
152
.10.1016/j.mechmachtheory.2018.01.005
20.
Carbone
,
G.
,
2011
, “
Stiffness Analysis and Experimental Validation of Robotic Systems
,”
Front. Mech. Eng.
,
6
(
2
), pp.
182
196
.10.1007/s11465-011-0221-3
21.
Wu
,
Y.
,
Klimchik
,
A.
,
Caro
,
S.
,
Boutolleau
,
C.
,
Furet
,
B.
, and
Pashkevich
,
A.
,
2014
, “
Experimental Study on Geometric and Elastostatic Calibration of Industrial Robot for Milling Application
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Besancon, France, July 8–11, pp.
1689
1696
.10.1109/AIM.2014.6878327
22.
Klimchik
,
A.
,
Ambiehl
,
A.
,
Garnier
,
S.
,
Furet
,
B.
, and
Pashkevich
,
A.
,
2016
, “
Experimental Study of Robotic-Based Machining
,”
IFAC-PapersOnLine
,
49
(
12
), pp.
174
179
.10.1016/j.ifacol.2016.07.591
23.
Klimchik
,
A.
,
Magid
,
E.
, and
Pashkevich
,
A.
,
2016
, “
Design of Experiments for Elastostatic Calibration of Heavy Industrial Robots With Kinematic Parallelogram and Gravity Compensator
,”
IFAC-PapersOnLine
,
49
(
12
), pp.
967
972
.10.1016/j.ifacol.2016.07.901
24.
Lian
,
B.
,
Sun
,
T.
,
Song
,
Y.
,
Jin
,
Y.
, and
Price
,
M.
,
2015
, “
Stiffness Analysis and Experiment of a Novel 5-DOF Parallel Kinematic Machine Considering Gravitational Effects
,”
Int. J. Mach. Tools Manuf.
,
95
, pp.
82
96
.10.1016/j.ijmachtools.2015.04.012
25.
Sun
,
T.
,
Wu
,
H.
,
Lian
,
B.
,
Qi
,
Y.
,
Wang
,
P.
, and
Song
,
Y.
,
2017
, “
Stiffness Modeling, Analysis and Evaluation of a 5 Degree of Freedom Hybrid Manipulator for Friction Stir Welding
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
23
), pp.
4441
4456
.10.1177/0954406216668911
26.
Taner
,
B.
, and
Dede
,
M. I. C.
,
2017
, “
Image Processing Based Stiffness Mapping of a Haptic Device
,”
New Advances in Mechanisms, Mechanical Transmissions and Robotics
,
Springer
,
Dordrecht, The Netherlands
, pp.
447
454
.
27.
Švaco
,
M.
,
Šekoranja
,
B.
,
Šuligoj
,
F.
, and
Jerbić
,
B.
,
2014
, “
Calibration of an Industrial Robot Using a Stereo Vision System
,”
Procedia Eng.
,
69
, pp.
459
463
.10.1016/j.proeng.2014.03.012
28.
Gonzalez-Hernandez
,
A.
, and
Castillo-Castaneda
,
E.
,
2013
, “
Stiffness Estimation of a Parallel Manipulator Using Image Analysis and Camera Calibration Techniques
,”
Robotica
,
31
(
4
), pp.
657
667
.10.1017/S0263574712000641
29.
Görgülü
,
İ.
,
Dede
,
M. C.
, and
Carbone
,
G.
,
2019
, “
An Experimental Test Procedure for Validation of Stiffness Model: A Case Study for R-Cube Parallel Mechanism
,”
IFToMM International Symposium on Robotics and Mechatronics
,
Taipei, Taiwan, Springer
, pp.
391
402
.10.1007/978-3-030-30036-4_35
30.
Slavković
,
N. R.
,
Milutinović
,
D. S.
,
Kokotović
,
B. M.
,
Glavonjić
,
M. M.
,
Živanović
,
S. T.
, and
Ehmann
,
K. F.
,
2013
, “
Cartesian Compliance Identification and Analysis of an Articulated Machining Robot
,”
FME Trans.
,
41
(
2
), pp.
83
95
.https://www.scholars.northwestern.edu/en/publications/cartesian-compliance-identification-and-analysis-of-an-articulate
31.
Hernández-Martínez
,
E. E.
,
Ceccarelli
,
M.
,
Carbone
,
G.
,
López-Cajún
,
C. S.
, and
Jáuregui-Correa
,
J. C.
,
2010
, “
Characterization of a Cable-Based Parallel Mechanism for Measurement Purposes
,”
Mech. Based Des. Struct. Mach.
,
38
(
1
), pp.
25
49
.10.1080/15397730903386101
32.
Yan
,
S.
,
Ong
,
S.
, and
Nee
,
A.
,
2016
, “
Stiffness Analysis of Parallelogram-Type Parallel Manipulators Using a Strain Energy Method
,”
Rob. Comput.-Integr. Manuf.
,
37
, pp.
13
22
.10.1016/j.rcim.2015.05.004
33.
Dumas
,
C.
,
Caro
,
S.
,
Chérif
,
M.
,
Garnier
,
S.
, and
Furet
,
B.
,
2010
, “
A Methodology for Joint Stiffness Identification of Serial Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Taipei, Taiwan, Oct. 18–22, pp.
464
469
.10.1109/IROS.2010.5652140
34.
Ding
,
B.
,
Cazzolato
,
B. S.
,
Stanley
,
R. M.
,
Grainger
,
S.
, and
Costi
,
J. J.
,
2014
, “
Stiffness Analysis and Control of a Stewart Platform-Based Manipulator With Decoupled Sensor–Actuator Locations for Ultrahigh Accuracy Positioning Under Large External Loads
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
6
), p.
061008
.10.1115/1.4027945
35.
Nyce
,
D. S.
,
2016
,
Position Sensors
,
Wiley
,
Hoboken, NJ
.
36.
Görgülü
,
İ.
,
2018
, “
Optimal Design of a Kinesthetic Haptic Device Mechanism for Enhancing Its Impedance Characteristics
,”
Master's thesis
,
Izmir Institute of Technology
,
Izmir, Turkey
. https://www.semanticscholar.org/paper/Optimal-design-of-a-kinesthetic-haptic-device-for-G%C3%B6rg%C3%BCl%C3%BC/c8c0b5517e04efd11b35b5a9d218cc38c32a1167
37.
Li
,
W.
,
Gao
,
F.
, and
Zhang
,
J.
,
2005
, “
R-Cube, a Decoupled Parallel Manipulator Only With Revolute Joints
,”
Mech. Mach. Theory
,
40
(
4
), pp.
467
473
.10.1016/j.mechmachtheory.2004.09.001
38.
Klimchik
,
A.
,
2011
, “
Enhanced Stiffness Modeling of Serial and Parallel Manipulators for Robotic-Based Processing of High Performance Materials
,”
Ph.D. thesis
,
Ecole Centrale de Nantes (ECN); Ecole des Mines de Nantes
,
Nantes, France
.https://tel.archives-ouvertes.fr/tel-00711978/document
39.
Kern
,
T. A.
,
2009
,
Engineering Haptic Devices: A Beginner's Guide for Engineers
,
Springer Publishing Company
,
London, UK
.
You do not currently have access to this content.