Abstract

In this paper, we present an integrated robotic arm with a flexible endoscope for laparoscopy. The endoscope holder is built to mimic a human operator that reacts to the surgeon's push while maintaining both the incision opening through the patient's body and the center of the endoscopic image. An impedance control algorithm is used to react to the surgeon's push when the robotic arm gets in the way. A modified software remote center-of-motion (RCM) constraint formulation then enables simultaneous RCM and impedance control. We derived the kinematic relationship between the robotic arm and line of sight of the flexible endoscope for image center control. Using this kinematic model, we integrated the task control for RCM and surgeon cooperation and the endoscope image centering into a semi-autonomous system. Implementation of the control algorithm with both matlab simulation and the HIWIN RA605-710 robotic arm with a MitCorp F500 flexible endoscope demonstrated the feasibility of the proposed algorithm.

References

1.
Berkelman
,
P.
,
Boidard
,
E.
,
Cinquin
,
P.
, and
Troccaz
,
J.
,
2003
, “
LER: The Light Endoscope Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2003
), Las Vegas, NV, Oct. 27–31, pp.
2835
2840
.10.1109/IROS.2003.1249300
2.
Long
,
J.-A.
,
Cinquin
,
P.
,
Troccaz
,
J.
,
Voros
,
S.
,
Berkelman
,
P.
,
Descotes
,
J.-L.
,
Letoublon
,
C.
, and
Rambeaud
,
J.-J.
,
2007
, “
Development of Miniaturized Light Endoscope-Holder Robot for Laparoscopic Surgery
,”
J. Endourology, Artic.
,
21
(
8
), pp.
911
914
.10.1089/end.2006.0328
3.
Kim
,
S. H.
,
Seo
,
J. T.
,
Woo
,
J.
, and
Yi
,
B. J.
,
2017
, “
Design of Endoscope Holder Mechanism and Controller for a Laryngeal Surgical Robotic System
,”
14th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI
, Jeju, South Korea, June 28–July 1, pp.
815
817
.10.1109/URAI.2017.7992832
4.
Lefebvre
,
T.
,
Xiao
,
J.
,
Bruyninckx
,
H.
, and
De Gersem
,
G.
,
2005
, “
Active Compliant Motion: A Survey
,”
Adv. Rob., Rev.
,
19
(
5
), pp.
479
499
.10.1163/156855305323383767
5.
Hannaford
,
B.
,
Rosen
,
J.
,
Friedman
,
D. W.
,
King
,
H.
,
Roan
,
P.
,
Cheng
,
L.
,
Glozman
,
D.
,
Ma
,
J.
,
Nia Kosari
,
S.
, and
Whiet
,
L.
,
2013
, “
Raven-II: An Open Platform for Surgical Robotics Research
,”
IEEE Trans. Biomed. Eng., Artic.
,
60
(
4
), pp.
954
959
. 10.1109/TBME.2012.2228858
6.
Larocca
,
V.
,
Marino
,
F.
,
Filippis
,
A.
,
Gidaro
,
S.
, and
Lococo
,
A.
,
Spirito Santo Hospital, Pescara, Italy
2014
, “
A New Operative Telesurgical System: Telelap ALF-X-Experimental Study on Animal Model
,”
J. Adv. Biotechnol. Bioeng.
,
2
(
1
), pp.
12
15
.10.12970/2311-1755.2014.02.01.2
7.
Guthart
,
G. S.
, and
Salisbury
,
K. J.
, Jr.
,
2000
, “
Intuitive Telesurgery System: Overview and Application
,”
Proceedings IEEE International Conference on Robotics and Automation
, Vol.
1
, San Francisco, CA, Apr. 24–28, pp.
618
621
.10.1109/ROBOT.2000.844121
8.
Sun
,
L. W.
,
Van Meer
,
F.
,
Bailly
,
Y.
, and
Yeung
,
C. K.
,
2007
, “
Design and Development of a da Vinci Surgical System Simulator
,”
Proceedings of the IEEE International Conference on Mechatronics and Automation, ICMA
, Harbin, China, Aug. 5–8, pp.
1050
1055
.10.1109/ICMA.2007.4303693
9.
Kuo
,
C.-H.
, and
Dai
,
J. S.
,
2009
,
Robotics for Minimally Invasive Surgery: A Historical Review From the Perspective of Kinematics
,
Springer
,
Dordrecht, The Netherlands
.
10.
Chan
,
J. Y. K.
,
Leung
,
I.
,
Navarro-Alarcon
,
D.
,
Lin
,
W.
,
Li
,
P.
,
Lee
,
D. L. Y.
,
Liu
,
Y-h.
, and
Tong
,
M. C. F.
,
2016
, “
Foot-Controlled Robotic-Enabled Endoscope Holder for Endoscopic Sinus Surgery: A Cadaveric Feasibility Study
,”
Laryngoscope, Artic.
,
126
(
3
), pp.
566
569
.10.1002/lary.25634
11.
He
,
Y.
,
Zhang
,
P.
,
Jin
,
H.
,
Hu
,
Y.
, and
Zhang
,
J.
,
2016
, “
Type Synthesis for Remote Center of Motion Mechanisms Based on Coupled Motion of Two Degrees-of-Freedom
,”
ASME J. Mech. Des.
,
138
(
12
), p. 122301.10.1115/1.4034301
12.
Wilson
,
J. T.
,
Tsao
,
T. C.
,
Hubschman
,
J. P.
, and
Schwartz
,
S.
,
2010
, “
Evaluating Remote Centers of Motion for Minimally Invasive Surgical Robots by Computer Vision
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
, Montreal, QC, Canada, July 6–9, pp.
1413
1418
.10.1109/AIM.2010.5695924
13.
Zorn
,
L.
,
Nageotte
,
F.
,
Zanne
,
P.
,
Legner
,
A.
,
Dallemagne
,
B.
,
Marescaux
,
J.
, and
de Mathelin
,
M.
,
2018
, “
A Novel Telemanipulated Robotic Assistant for Surgical Endoscopy: Preclinical Application to ESD
,”
IEEE Trans. Biomed. Eng.
,
65
(
4
), pp.
797
808
.10.1109/TBME.2017.2720739
14.
CMR Surgical
,
2020
, “Surgical Teams—Operate Your Way,” CMR Surgical Ltd., Cambridge, UK, accessed May 14, 2020, https://cmrsurgical.com/versius/surgical-teams/
15.
Marinho
,
M. M.
,
Harada
,
K.
, and
Mitsuishi
,
M.
,
2017
, “
Comparison of Remote Center-of-Motion Generation Algorithms
,”
SII 2017—2017 IEEE/SICE International Symposium on System Integration
, Taipei, Taiwan, Dec. 11–14, pp.
668
673
.10.1109/SII.2017.8279298
16.
Azimian
,
H.
,
Patel
,
R. V.
, and
Naish
,
M. D.
,
2010
, “
On Constrained Manipulation in Robotics-Assisted Minimally Invasive Surgery
,”
Third IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2010
, Tokyo, Japan, Sept. 26–29, pp.
650
655
.10.1109/BIOROB.2010.5627985
17.
Aghakhani
,
N.
,
Geravand
,
M.
,
Shahriari
,
N.
,
Vendittelli
,
M.
, and
Oriolo
,
G.
,
2013
, “
Task Control With Remote Center of Motion Constraint for Minimally Invasive Robotic Surgery
,”
Proceedings—IEEE International Conference on Robotics and Automation
, Karlsruhe, Germany, May 6–10, pp.
5807
5812
.10.1109/ICRA.2013.6631412
18.
Sandoval
,
J.
,
Poisson
,
G.
, and
Vieyres
,
P.
,
2017
, “
A New Kinematic Formulation of the RCM Constraint for Redundant Torque-Controlled Robots
,”
IEEE International Conference on Intelligent Robots and Systems
, Vancouver, BC, Canada, Sept. 24–28, pp.
4576
4581
.10.1109/IROS.2017.8206326
19.
Pham
,
C. D.
,
Coutinho
,
F.
,
Leite
,
A. C.
,
Lizarralde
,
F.
,
From
,
P. J.
, and
Johansson
,
R.
,
2015
, “
Analysis of a Moving Remote Center of Motion for Robotics-Assisted Minimally Invasive Surgery
,”
IEEE International Conference on Intelligent Robots and Systems
, Hamburg, Germany, Sept. 28–Oct. 2, pp.
1837
1842
.10.1109/IROS.2015.7353557
20.
Osa
,
T.
,
Staub
,
C.
, and
Knoll
,
A.
,
2010
, “
Framework of Automatic Robot Surgery System Using Visual Servoing
,”
IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS—Conference Proceedings
, Taipei, Taiwan, Oct. 18–22, pp.
1837
1842
.10.1109/IROS.2010.5650301
21.
Marinho
,
M. M.
,
Bernardes
,
M. C.
, and
Bo
,
A. P. L.
,
2016
, “
Using General-Purpose Serial-Link Manipulators for Laparoscopic Surgery With Moving Remote Center of Motion
,”
J. Med. Rob. Res.
,
01
(
04
), p.
1650007
.10.1142/S2424905X16500070
22.
Ott
,
L.
,
Nageotte
,
F.
,
Zanne
,
P.
, and
Mathelin
,
M. D.
,
2011
, “
Robotic Assistance to Flexible Endoscopy by Physiological-Motion Tracking
,”
IEEE Trans. Rob.
,
27
(
2
), pp.
346
359
.10.1109/TRO.2010.2098623
23.
Webster
,
R. J.
, III.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.10.1177/0278364910368147
24.
Degirmenci
,
A.
,
Loschak
,
P. M.
,
Tschabrunn
,
C.
,
Anter
,
M. E.
, and
Howe
,
R. D.
,
2016
, “
Compensation for Unconstrained Catheter Shaft Motion in Cardiac Catheters
,”
Proceedings—IEEE International Conference on Robotics and Automation
, Stockholm, Sweden, May 16–21, pp.
4436
4442
.10.1109/ICRA.2016.7487643
25.
Chiacchio
,
P.
,
Chiaverini
,
S.
,
Sciavicco
,
L.
, and
Siciliano
,
B.
,
1991
, “
Closed-Loop Inverse Kinematics Schemes for Constrained Redundant Manipulators With Task Space Augmentation and Task Priority Strategy
,”
Int. J. Rob. Res., Artic.
,
10
(
4
), pp.
410
425
.10.1177/027836499101000409
You do not currently have access to this content.