Abstract

Percutaneous needle-based procedures have replaced open surgeries in cancer treatments to perform the tasks with minimal invasiveness to the tissue. Precise placement of the needle at target positions in cancer diagnostic (e.g., breast biopsy) or therapeutic (e.g., prostate brachytherapy) procedures governs the success of such procedures. Also, in many needle insertion applications, it is desired to steer away from critical organs or to maneuver around anatomical obstacles in tissue. This work introduces a flexible three-dimensional (3D) printed percutaneous needle with embedded actuators for improved navigation inside the tissue toward the target. The needle is manipulated via a programmed portable motorized control unit to realize an average angular deflection of about 15 and 14 deg in air and a tissue-mimicking phantom, respectively. We demonstrated the needle's capability to reach the target, while avoiding obstacles. We also demonstrated that the flexible needle can be guided through a desired trajectory by controlling its angular deflection and axial movement. The 3D deflection of the needle is expected to assist in breast cancer lumpectomy for multiple extractions of tissue samples or in prostate brachytherapy via a curvilinear approach. The flexible needle may help reducing the complexity of current path planning algorithms, and thereby improve efficiency of closed-loop control systems in needle steering.

References

1.
Centers for Disease Control and Prevention
,
2020
, “
Leading Causes of Death
,” Centers for Disease Control and Prevention, Atlanta, GA, accessed Nov. 16, 2020, https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
2.
National Cancer Institute
,
2020
, “
Common Cancer Types
,” National Cancer Institute, Bethesda, MD, accessed Nov. 16, 2020, https://www.cancer.gov/types/common-cancers
3.
American Cancer Society Cancer Statistics Center
,
2020
, “
Estimated New Cases of Breast Cancer
,” American Cancer Society Cancer Statistics Center/Breast, Atlanta, GA, accessed Nov. 16, 2020, https://cancerstatisticscenter.cancer.org/#!/cancer-site/Breast
4.
American Cancer Society Cancer Statistics Center
,
2020
, “
Estimated New Cases of Prostate Cancer
,” American Cancer Society Cancer Statistics Center/Prostate, Atlanta, GA, accessed Nov. 16, 2020, https://cancerstatisticscenter.cancer.org/#!/cancer-site/Prostate
5.
Houvenaeghel
,
G.
,
Goncalves
,
A.
,
Classe
,
J. M.
,
Garbay
,
J. R.
,
Giard
,
S.
,
Charytensky
,
H.
,
Cohen
,
M.
,
Belichard
,
C.
,
Faure
,
C.
,
Uzan
,
S.
,
Hudry
,
D.
,
Azuar
,
P.
,
Villet
,
R.
,
Gimbergues
,
P.
,
Tunon de Lara
,
C.
,
Martino
,
M.
,
Lambaudie
,
E.
,
Coutant
,
C.
,
Dravet
,
F.
,
Chauvet
,
M. P.
,
Chéreau Ewald
,
E.
,
Penault-Llorca
,
F.
, and
Esterni
,
B.
,
2014
, “
Characteristics and Clinical Outcome of T1 Breast Cancer: A Multicenter Retrospective Cohort Study
,”
Ann. Oncol.
,
25
(
3
), pp.
623
628
.10.1093/annonc/mdt532
6.
McCahill
,
L.
,
Single
,
R. M.
,
Bowles
,
E. J. A.
,
Feigelson
,
H. S.
,
James
,
T. A.
,
Barney
,
T.
,
Engel
,
J. M.
, and
Onitilo
,
A. A.
,
2012
, “
Variability in Reexcision Following Breast Conservation Surgery
,”
J. Am. Med. Assoc
,
307
(
5
), pp.
467
475
.10.1001/jama.2012.43
7.
Jeffries
,
D. O.
,
Dossett
,
L. A.
, and
Jorns
,
J. M.
,
2017
, “
Localization for Breast Surgery the Next Generation
,”
Arch. Pathol. Lab. Med.
,
141
(
10
), pp.
1324
1329
.10.5858/arpa.2017-0214-RA
8.
Mango
,
V.
,
Ha
,
R.
,
Gomberawalla
,
A.
,
Wynn
,
R.
, and
Feldman
,
S.
,
2016
, “
Evaluation of the SAVI SCOUT Surgical Guidance System for Localization and Excision of Nonpalpable Breast Lesions: A Feasibility Study
,”
Am. J. Roentgenol.
,
207
(
4
), pp.
69
72
.https://www.ajronline.org/doi/full/10.2214/AJR.15.15962
9.
Patel
,
S. N.
,
Mango
,
V. L.
,
Jadeja
,
P.
,
Friedlander
,
L.
,
Desperito
,
E.
,
Wynn
,
R.
,
Feldman
,
S.
, and
Ha
,
R.
,
2018
, “
Reflector-Guided Breast Tumor Localization Versus Wire Localization for Lumpectomies: A Comparison of Surgical Outcomes
,”
Clin. Imag.
,
47
, pp.
14
17
.10.1016/j.clinimag.2017.07.020
10.
Yu
,
Y.
,
Yan
,
K.
,
Podder
,
T.
,
Ng
,
W. S.
,
Brill
,
K.
, and
Liao
,
L.
,
2008
, “
MRI-Guided Robot-Assisted Lumpectomy for Surgical Management of Early Breast Cancer: Preliminary Investigation and Use Case Analysis
,”
Eighth IEEE International Conference Bioinformatics Bioengineering
,
Athens, Greece
,
Oct. 8–10
, pp.
989
994
.10.1109/BIBE.2008.4696816
11.
Yan
,
K.
,
Podder
,
T.
,
Ng
,
W. S.
, and
Yu
,
Y.
,
2007
, “
Smart' Needle for Percutaneous Surgery: Influential Factor Investigation
,”
29th Annual International Conference of IEEE Engineering in Medicine and Biology Society
,
Lyon, France
,
Aug. 22–26
, pp.
461
464
.10.1109/IEMBS.2007.4352323
12.
Nag
,
S.
,
Beyer
,
D.
,
Friedland
,
J.
,
Grimm
,
P.
, and
Nath
,
R.
,
1999
, “
American Brachytherapy Society (ABS) Recommendations for Transperineal Permanent Brachytherapy of Prostate Cancer
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
44
(
4
), pp.
789
799
.10.1016/S0360-3016(99)00069-3
13.
Merrick
,
G.
,
Zelefsky
,
M.
,
Sylvester
,
J.
,
Nag
,
S.
, and
Bice
,
W.
,
2007
, “
American Brachytherapy Society (ABS) Prostate Low-Dose Rate Task Group Guidelines
,” American Brachytherapy Society (ABS), Reston, VA, accessed Dec. 24, 2020, https://www.americanbrachytherapy.org/ABS/document-server/?cfp=ABS/assets/file/public/consensus-statements/prostate_low-doseratetaskgroup.pdf
14.
Yu
,
Y.
,
Anderson
,
L. L.
,
Li
,
Z.
,
Mellenberg
,
D. E.
,
Nath
,
R.
,
Schell
,
M. C.
,
Waterman
,
F. M.
,
Wu
,
A.
, and
Blasko
,
J. C.
,
1999
, “
Permanent Prostate Seed Implant Brachytherapy: Report of the American Association of Physicists in Medicine Task Group No. 64
,”
Med. Phys.
,
26
(
10
), pp.
2054
2076
.10.1118/1.598721
15.
Podder
,
T. K.
,
Dicker
,
A. P.
,
Hutapea
,
P.
,
Darvish
,
K.
, and
Yu
,
Y.
,
2012
, “
A Novel Curvilinear Approach for Prostate Seed Implantation
,”
J. Med. Phys.
,
39
(
4
), pp.
1887
1892
.10.1118/1.3694110
16.
van de Berg
,
N. J.
,
van Gerwen
,
D. J.
,
Dankelman
,
J.
, and
van den Dobbelsteen
,
J. J.
,
2015
, “
Design Choices in Needle Steering -A Review
,”
IEEE/ASME Trans. Mechatronics
,
20
(
5
), pp.
2172
2183
.10.1109/TMECH.2014.2365999
17.
Merrick
,
G. S.
,
Butler
,
W. M.
,
Dorsey
,
A. T.
, and
Walbert
,
H. L.
,
1998
, “
Influence of Timing on the Dosimetric Analysis of Transperineal Ultrasound-Guided, Prostatic Conformal Brachytherapy
,”
Radiat. Oncol. Investig.
,
6
(
4
), pp.
182
190
.10.1002/(SICI)1520-6823(1998)6:4<182::AID-ROI6>3.0.CO;2-U
18.
Stone
,
N. N. N.
,
Roy
,
J.
,
Hong
,
S.
,
Lo
,
Y. C. C.
, and
Stock
,
R. G. G.
,
2002
, “
Prostate Gland Motion and Deformation Caused by Needle Placement During Brachytherapy
,”
Brachytherapy
,
1
(
3
), pp.
154
160
.10.1016/S1538-4721(02)00058-2
19.
Lee
,
S.
,
Rodney
,
E.
,
Traughber
,
B.
,
Biswas
,
T.
,
Colussi
,
V.
, and
Podder
,
T.
,
2017
, “
Evaluation of Interfractional Variation of Organs and Displacement of Catheters During High-Dose-Rate Interstitial Brachytherapy for Gynecologic Malignancies
,”
Brachytherapy
,
16
(
6
), pp.
1192
1198
.10.1016/j.brachy.2017.09.001
20.
Cohen
,
R. J.
,
Shannon
,
B. A.
,
Phillips
,
M.
,
Moorin
,
R. E.
,
Wheeler
,
T. M.
, and
Garrett
,
K. L.
,
2008
, “
Central Zone Carcinoma of the Prostate Gland: A Distinct Tumor Type With Poor Prognostic Features
,”
J. Urol.
,
179
(
5
), pp.
1762
1767
.10.1016/j.juro.2008.01.017
21.
McNeal
,
J. E.
,
Redwine
,
E. A.
,
Freiha
,
F. S.
, and
Stamey
,
T. A.
,
1988
, “
Zonal Distribution of Prostatic Adenocarcinoma. Correlation With Histologic Pattern and Direction of Spread
,”
Am. J. Surg. Pathol.
,
12
(
12
), pp.
897
906
.10.1097/00000478-198812000-00001
22.
Brockman
,
C. S.
, and
Harshman
,
G. J.
,
2017
, “
Systems and Methods for Off-Axis Tissue Manipulation
,”
U.S. Patent No. 9,839,443
.https://pubchem.ncbi.nlm.nih.gov/patent/US-9839443-B2
23.
Desai
,
J. P.
, and
Ayvali
,
E.
,
2017
, “
Actuated Steerable Probe and Systems and Methods of Using Same
,”
U.S. Patent No. 9,655,679
.https://patents.google.com/patent/US9655679
24.
Melsheimer
,
J. S.
,
2016
, “
Deflectable Biopsy Device
,”
U.S. Patent No. 9,247,929
.https://patents.justia.com/patent/9247929
25.
Eck
,
K.
,
2007
, “
Surgical Needle and Method of Guiding a Surgical Needle
,”
U.S. Patent Application No. 12/299,122
.https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2007125494
26.
Arvanaghi
,
B.
,
2006
, “
Bendable Needle Assembly
,”
U.S. Patent Application No. 11/525,134
.https://patents.google.com/patent/US20080097347A1/en
27.
Smits
,
K. F.
,
Rutten
,
J. J.
, and
Adams
,
P. G.
,
2005
, “
Method and Apparatus for Imparting Curves in Implantable Elongated Medical Instruments
,”
U.S. Patent No. 6,907,298
.https://patents.google.com/patent/US20030130712
28.
Salcudean
,
S. E.
,
Rohling
,
R. N.
,
Okazawa
,
S. H.
, and
Ebrahimi
,
A. R.
,
2010
, “
Steerable Needle
,”
U.S. Patent No. 7,662,128
.
29.
Ryan
,
T. J.
, and
Winslow
,
C. J.
,
1994
, “
Percutaneous Discectomy System Having a Bendable Discectomy Probe and a Steerable Cannula
,”
U.S. Patent No. 5,285,795
.https://portal.unifiedpatents.com/patents/patent/US-5285795-A
30.
Kuhle
,
W. G.
,
1999
, “
Biopsy Needle With Flared Tip
,”
U.S. Patent No. 5,938,635
.https://patents.google.com/patent/US5938635A/en
31.
Kraft
,
D.
, and
Hole
,
J.
,
2008
, “
Device and Method for Rapid Aspiration and Collection of Body Tissue From Within an Enclosed Body Space
,”
U.S. Patent No. 7,462,181
.https://patentscope.wipo.int/search/en/detail.jsf?docId=CA94136527
32.
Reed
,
K. B.
,
Majewicz
,
A.
,
Kallem
,
V.
,
Alterovitz
,
R.
,
Goldberg
,
K.
,
Cowan
,
N. J.
, and
Okamura
,
A. M.
,
2011
, “
Robot-Assisted Needle Steering
,”
IEEE Robot. Autom. Mag.
,
18
(
4
), pp.
35
46
.10.1109/MRA.2011.942997
33.
Wedlick
,
T. R.
, and
Okamura
,
A. M.
,
2009
, “
Characterization of Pre-Curved Needles for Steering in Tissue
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Minneapolis, MN
,
Sept. 3–6
, pp.
1200
1203
.10.1109/IEMBS.2009.5333407
34.
Swaney
,
P. J.
,
Burgner
,
J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2013
, “
A Flexure-Based Steerable Needle: High Curvature With Reduced Tissue Damage
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
906
909
.10.1109/TBME.2012.2230001
35.
Webster
,
R. J.
,
Romano
,
J. M.
, and
Cowan
,
N. J.
,
2009
, “
Mechanics of Precurved-Tube Continuum Robots
,”
IEEE Trans. Robot.
,
25
(
1
), pp.
67
78
.10.1109/TRO.2008.2006868
36.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
(
4
), pp.
413
431
.10.1016/j.medengphy.2006.07.003
37.
Alterovitz
,
R.
,
Branicky
,
M.
, and
Goldberg
,
K.
,
2008
, “
Motion Planning Under Uncertainty for Image-Guided Medical Needle Steering
,”
J. Robot. Res.
,
27
(
11–12
), pp.
1361
1374
.10.1177/0278364908097661
38.
Rossa
,
C.
,
Usmani
,
N.
,
Sloboda
,
R.
, and
Tavakoli
,
M.
,
2017
, “
A Hand-Held Assistant for Semiautomated Percutaneous Needle Steering
,”
IEEE Trans. Biomed. Eng.
,
64
(
3
), pp.
637
648
.10.1109/TBME.2016.2565690
39.
Okazawa
,
S.
,
Ebrahimi
,
R.
,
Chuang
,
J.
,
Salcudean
,
S. E.
, and
Rohling
,
R.
,
2005
, “
Hand-Held Steerable Needle Device
,”
IEEE/ASME Trans. Mechatronics
,
10
(
3
), pp.
285
296
.10.1109/TMECH.2005.848300
40.
Morimoto
,
T. K.
,
Hawkes
,
E. W.
, and
Okamura
,
A. M.
,
2017
, “
Design of a Compact Actuation and Control System for Flexible Medical Robots
,”
IEEE Robot. Autom. Lett.
,
2
(
3
), pp.
1579
1585
.10.1109/LRA.2017.2676240
41.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
,
Ramesh
,
K. T.
, and
Okamura
,
A. M.
,
2010
, “
Mechanics of Flexible Needles Robotically Steered Through Soft Tissue
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1640
1660
.10.1177/0278364910369714
42.
Roesthuis
,
R. J.
,
Abayazid
,
M.
, and
Misra
,
S.
,
2012
, “
Mechanics-Based Model for Predicting in-Plane Needle Deflection With Multiple Bends
,”
Fourth IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Rome, Italy
,
June 24–27
, pp.
69
74
.10.1109/BioRob.2012.6290829
43.
Datla
,
N. V.
,
Konh
,
B.
,
Honarvar
,
M.
,
Podder
,
T. K.
,
Dicker
,
A. P.
,
Yu
,
Y.
, and
Hutapea
,
P.
,
2014
, “
A Model to Predict Deflection of Bevel-Tipped Active Needle Advancing in Soft Tissue
,”
Med. Eng. Phys.
,
36
(
3
), pp.
285
293
.10.1016/j.medengphy.2013.11.006
44.
Meltsner
,
M. A.
,
Ferrier
,
N. J.
, and
Thomadsen
,
B. R.
,
2007
, “
Observations on Rotating Needle Insertions Using a Brachytherapy Robot
,”
Phys. Med. Biol.
,
52
(
19
), pp.
6027
6037
.10.1088/0031-9155/52/19/021
45.
Engh
,
J. A.
,
Minhas
,
D. S.
,
Kondziolka
,
D.
, and
Riviere
,
C. N.
,
2010
, “
Percutaneous Intracerebral Navigation by Duty-Cycled Spinning of Flexible Bevel-Tipped Needles
,”
Neurosurgery
,
67
(
4
), pp.
1117
1122
.10.1227/NEU.0b013e3181ec1551
46.
Swensen
,
J. P.
,
Lin
,
M.
,
Okamura
,
A. M.
, and
Cowan
,
N. J.
,
2014
, “
Torsional Dynamics of Steerable Needles: Modeling and Fluoroscopic Guidance
,”
IEEE Trans. Biomed. Eng.
,
61
(
11
), pp.
2707
2717
.10.1109/TBME.2014.2326161
47.
Reed
,
K. B.
,
Okamura
,
A. M.
, and
Cowan
,
N. J.
,
2009
, “
Modeling and Control of Needles With Torsional Friction
,”
IEEE Trans. Biomed. Eng.
,
56
(
12
), pp.
2905
2916
.10.1109/TBME.2009.2029240
48.
Scali
,
M.
,
Pusch
,
T. P.
,
Breedveld
,
P.
, and
Dodou
,
D.
,
2017
, “
Needle-Like Instruments for Steering Through Solid Organs: A Review of the Scientific and Patent Literature
,”
Proc. Inst. Mech. Eng. Part H
,
231
(
3
), pp.
250
265
.10.1177/0954411916672149
49.
Swaney
,
P. J.
,
York
,
P. A.
,
Gilbert
,
H. B.
,
Burgner-Kahrs
,
J.
, and
Webster
,
R. J.
,
2017
, “
Design, Fabrication, and Testing of a Needle-Sized Wrist for Surgical Instruments
,”
ASME J. Med. Device
,
11
(
1
), pp.
145011
145019
.10.1115/1.4034575
50.
Su
,
H.
,
Li
,
G.
,
Rucker
,
D. C.
,
Webster
,
R. J.
, and
Fischer
,
G. S.
,
2016
, “
A Concentric Tube Continuum Robot With Piezoelectric Actuation for MRI-Guided Closed-Loop Targeting
,”
Ann. Biomed. Eng.
,
44
(
10
), pp.
2863
2873
.10.1007/s10439-016-1585-7
51.
Ryu
,
S. C.
,
Renaud
,
P.
,
Black
,
R. J.
,
Daniel
,
B. L.
, and
Cutkosky
,
M. R.
,
2011
, “
Feasibility Study of an Optically Actuated MR-Compatible Active Needle
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE
,
San Francisco, CA
,
Sept. 25–30
, pp.
2564
2569
.10.1109/IROS.2011.6094945
52.
Ayvali
,
E.
,
Liang
,
C. P.
,
Ho
,
M.
,
Chen
,
Y.
, and
Desai
,
J. P.
,
2012
, “
Towards a Discretely Actuated Steerable Cannula for Diagnostic and Therapeutic Procedures
,”
Int. J. Rob. Res.
,
31
(
5
), pp.
588
603
.10.1177/0278364912442429
53.
Morimoto
,
T. K.
,
Cerrolaza
,
J. J.
,
Hsieh
,
M. H.
,
Cleary
,
K.
,
Okamura
,
A. M.
, and
Linguraru
,
M. G.
,
2017
, “
Design of Patient-Specific Concentric Tube Robots Using Path Planning From 3-D Ultrasound
,”
39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE
,
Seogwipo, South Korea
,
July 11–15
, pp.
165
168
.10.1109/EMBC.2017.8036788
54.
Abayazid
,
M.
,
Kemp
,
M.
, and
Misra
,
S.
,
2013
, “
3D Flexible Needle Steering in Soft-Tissue Phantoms Using Fiber Bragg Grating Sensors
,”
Proceedings of IEEE International Conference Robotics Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
5843
5849
.10.1109/ICRA.2013.6631418
55.
Scali
,
M.
,
Pusch
,
T. P.
,
Breedveld
,
P.
, and
Dodou
,
D.
,
2017
, “
Ovipositor-Inspired Steerable Needle: Design and Preliminary Experimental Evaluation
,”
Bioinspir. Biomim.
,
13
(
1
), pp.
016006
016022
.10.1088/1748-3190/aa92b9
56.
Sears
,
P.
, and
Dupont
,
P.
,
2006
, “
A Steerable Needle Technology Using Curved Concentric Tubes
,”
IEEE International Conference Intelligent Robotics System
,
Beijing, China
,
Oct. 9–15
, pp.
2850
2856
.10.1109/IROS.2006.282072
57.
van de Berg
,
N. J.
,
Dankelman
,
J.
, and
van den Dobbelsteen
,
J. J.
,
2015
, “
Design of an Actively Controlled Steerable Needle With Tendon Actuation and FBG-Based Shape Sensing
,”
Med. Eng. Phys.
,
37
(
6
), pp.
617
622
.10.1016/j.medengphy.2015.03.016
58.
Ryu
,
S. C.
,
Quek
,
Z. F.
,
Renaud
,
P.
,
Black
,
R. J.
,
Daniel
,
B. L.
, and
Cutkosky
,
M. R.
,
2012
, “
An Optical Actuation System and Curvature Sensor for a MR-Compatible Active Needle
,”
IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
1589
1594
.10.1109/ICRA.2012.6224964
59.
Konh
,
B.
, and
Podder
,
T. K.
,
2017
, “
Design and Fabrication of a Robust Active Needle Using SMA Wires
,”
ASME
Paper No. DMD2017-3470.10.1115/DMD2017-3470
60.
Varnamkhasti
,
Z. K.
, and
Konh
,
B.
,
2019
, “
Design and Performance Study of a Novel Minimally Invasive Active Surgical Needle
,”
ASME J. Med. Device
,
13
(
4
), pp.
1
9
.10.1115/1.4044526
61.
Konh
,
B.
,
Sasaki
,
D.
,
Podder
,
T. K.
, and
Ashrafiuon
,
H.
,
2020
, “
3D Manipulation of an Active Steerable Needle Via Actuation of Multiple SMA Wires
,”
Robotica
,
38
(
3
), pp.
410
426
.10.1017/S0263574719000705
62.
Karimi
,
S.
, and
Konh
,
B.
,
2020
, “
Self-Sensing Electrical Resistance Feedback Control of Multiple Interacting SMA Actuators in a 3D Steerable Active Needle
,”
J. Intell. Mater. Syst. Struct.
,
31
(
12
), pp.
1524
1540
.10.1177/1045389X20919971
63.
Padasdao
,
B.
, and
Konh
,
B.
,
2020
, “
Shape Memory Alloy Actuators in an Active Needle—Modeling, Precise Assembly, and Performance Evaluation
,”
ASME J. Manuf. Sci. Eng.
,
143
(
2
) p.
021003
.10.1115/1.4047737
64.
Varnamkhasti
,
Z. K.
,
Konh
,
B.
,
Maghsoudi
,
O. H.
,
Yu
,
Y.
, and
Liao
,
L.
,
2019
, “
Ultrasound Needle Tracking Inside a Soft Phantom and Methods to Improve the Needle Tip Visualization
,” Design of Medical Devices Conference,
ASME
Paper No. DMD2019-3299.10.1115/DMD2019-3299
You do not currently have access to this content.