Abstract

In individuals with transtibial limb loss, a contributing factor to mobility-related challenges is the disruption of biological calf muscle function due to transection of the soleus and gastrocnemius. Powered prosthetic ankles can restore primary function of the mono-articular soleus muscle, which contributes to ankle plantarflexion. In effect, a powered ankle acts like an artificial soleus (AS). However, the biarticular gastrocnemius connection that simultaneously contributes to ankle plantarflexion and knee flexion torques remains missing, and there are currently no commercially available prosthetic ankles that incorporate an artificial gastrocnemius (AG). The goal of this work is to describe the design of a novel emulator capable of independently controlling artificial soleus and gastrocnemius behaviors for transtibial prosthesis users during walking. To evaluate the emulator's efficacy in controlling the artificial gastrocnemius behaviors, a case series walking study was conducted with four transtibial prosthesis users. Data from this case series showed that the emulator exhibits low resistance to the user's leg swing, low hysteresis during passive spring emulation, and accurate force tracking for a range of artificial soleus and gastrocnemius behaviors. The emulator presented in this paper is versatile and can facilitate experiments studying the effects of various artificial soleus and gastrocnemius dynamics on gait or other movement tasks. Using this system, it is possible to address existing knowledge gaps and explore a wide range of artificial soleus and gastrocnemius behaviors during gait and potentially other activities of daily living.

References

1.
Torburn
,
L.
,
Powers
,
C. M.
,
Guiterrez
,
R.
, and
Perry
,
J.
,
1995
, “
Energy Expenditure During Ambulation in Dysvascular and Traumatic Below-Knee Amputees: A Comparison of Five Prosthetic Feet
,”
J. Rehabil. Res. Dev.
,
32
(
2
), pp.
111
19
.https://www.rehab.research.va.gov/jour/95/32/2/pdf/torburn.pdf
2.
Hoogendoorn
,
J. M.
, and
van der Werken
,
C.
,
2001
, “
Grade III Open Tibial Fractures: Functional Outcome and Quality of Life in Amputees Versus Patients With Successful Reconstruction
,”
Injury
,
32
(
4
), pp.
329
334
.10.1016/S0020-1383(00)00250-3
3.
Waters
,
R. L.
,
Perry
,
J.
,
Antonelli
,
D.
, and
Hislop
,
H.
,
1976
, “
Energy Cost of Walking of Amputees: The Influence of Level of Amputation
,”
J. Bone Jt. Surg. Am.
,
58
, pp.
42
46
.https://www.bonky.nl/images/20101010/Energy%20cost%20of%20walking%20of%20amputees%202010JBJS.pdf
4.
Herr
,
H. M.
, and
Grabowski
,
A. M.
,
2012
, “
Bionic Ankle–Foot Prosthesis Normalizes Walking Gait for Persons With Leg Amputation
,”
Proc. R. Soc. B Biol. Sci.
,
279
(
1728
), pp.
457
464
.10.1098/rspb.2011.1194
5.
Willson
,
A.
,
Routson
,
R. L.
,
Czerniecki
,
J. M.
,
Morgenroth
,
D. C.
, and
Aubin
,
P. M.
,
2015
, “
Towards a Biarticular Prosthesis: Simulations of Walking With a Prosthetic Gastrocnemius Spring
,”
Northwest Biomechanics Symposium
, Seattle, WA, May
1
2
.
6.
Malcolm
,
P. S.
,
Galle
,
W.
,
Derave
,
D.
, and
De
Clercq
,
2013
, “
Powered Biarticular Exoskeleton With Gastrocnemius Mimicking Configuration Produces Higher Reduction in Metabolic Cost Than Soleus Mimicking Configuration
,”
24th Congress of the International Society of Biomechanics (ISB 2013); 15th Brazilian Congress of Biomechanics
, Natal, Brazil, Aug.
4
9
.https://www.researchgate.net/publication/274139860_POWERED_BIARTICULAR_EXOSKELETON_WITH_GASTROCNEMIUS_MIMICKING_CONFIGURATION_PRODUCES_HIGHER_REDUCTION_IN_METABOLIC_COST_THAN_SOLEUS_MIMICKING_CONFIGURATION
7.
Eilenberg
,
M. F.
,
Endo
,
K.
, and
Herr
,
H.
,
2018
, “
Biomechanic and Energetic Effects of a Quasi-Passive Artificial Gastrocnemius on Transtibial Amputee Gait
,”
J. Rob.
,
2018
, pp.
1
12
.10.1155/2018/6756027
8.
Eilenberg
,
M. F.
,
Kuan
,
J.-Y.
, and
Herr
,
H.
,
2018
, “
Development and Evaluation of a Powered Artificial Gastrocnemius for Transtibial Amputee Gait
,”
J. Rob.
,
2018
, pp.
1
15
.10.1155/2018/5951965
9.
Willson
,
A. M.
,
Richburg
,
C. A.
,
Czerniecki
,
J.
,
Steele
,
K. M.
, and
Aubin
,
P. M.
,
2020
, “
Design and Development of a Quasi-Passive Transtibial Biarticular Prosthesis to Replicate Gastrocnemius Function in Walking
,”
ASME J. Med. Dev.
,
14
(
2
), p.
025001
.10.1115/1.4045879
10.
Zelik
,
K. E.
,
Collins
,
S. H.
,
Adamczyk
,
P. G.
,
Segal
,
A. D.
,
Klute
,
G. K.
,
Morgenroth
,
D. C.
,
Hahn
,
M. E.
,
Orendurff
,
M. S.
,
Czerniecki
,
J. M.
, and
Kuo
,
A. D.
,
2011
, “
Systematic Variation of Prosthetic Foot Spring Affects Center-of-Mass Mechanics and Metabolic Cost During Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
4
), pp.
411
419
.10.1109/TNSRE.2011.2159018
11.
Neptune
,
R. R.
,
Kautz
,
S. A.
, and
Zajac
,
F. E.
,
2001
, “
Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,”
J. Biomech.
,
34
(
11
), pp.
1387
1398
.10.1016/S0021-9290(01)00105-1
12.
Zmitrewicz
,
R. J.
,
Neptune
,
R. R.
, and
Sasaki
,
K.
,
2007
, “
Mechanical Energetic Contributions From Individual Muscles and Elastic Prosthetic Feet During Symmetric Unilateral Transtibial Amputee Walking: A Theoretical Study
,”
J. Biomech.
,
40
(
8
), pp.
1824
1831
.10.1016/j.jbiomech.2006.07.009
13.
Bobbert
,
M. F.
,
Huijing
,
P. A.
, and
van Ingen Schenau
,
G. J.
,
1986
, “
An Estimation of Power Output and Work Done by the Human Triceps Surae Musle-Tendon Complex in Jumping
,”
J. Biomech.
,
19
(
11
), pp.
899
906
.10.1016/0021-9290(86)90185-5
14.
Caputo
,
J. M.
, and
Collins
,
S. H.
,
2014
, “
A Universal Ankle–Foot Prosthesis Emulator for Human Locomotion Experiments
,”
ASME J. Biomech. Eng.
,
136
(
3
), p.
035002
.10.1115/1.4026225
15.
Brockett
,
C. L.
, and
Chapman
,
G. J.
,
2016
, “
Biomechanics of the Ankle
,”
Orthop. Trauma
,
30
(
3
), pp.
232
238
.10.1016/j.mporth.2016.04.015
16.
Buford
,
W. L.
,
Ivey
,
F. M.
,
Malone
,
J. D.
,
Patterson
,
R. M.
,
Pearce
,
G. L.
,
Nguyen
,
D. K.
, and
Stewart
,
A. A.
,
1997
, “
Muscle Balance at the Knee-Moment Arms for the Normal Knee and the ACL-Minus Knee
,”
IEEE Trans. Rehabil. Eng.
,
5
(
4
), pp.
367
379
.10.1109/86.650292
17.
Rasske
,
K.
,
Thelen
,
D. G.
, and
Franz
,
J. R.
,
2017
, “
Variation in the Human Achilles Tendon Moment Arm During Walking
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
2
), pp.
201
205
.10.1080/10255842.2016.1213818
18.
Gardinier
,
E. S.
,
Kelly
,
B. M.
,
Wensman
,
J.
, and
Gates
,
D. H.
,
2018
, “
A Controlled Clinical Trial of a Clinically-Tuned Powered Ankle Prosthesis in People With Transtibial Amputation
,”
Clin. Rehabil.
,
32
(
3
), pp.
319
329
.10.1177/0269215517723054
19.
Ingraham
,
K. A.
,
Choi
,
H.
,
Gardinier
,
E. S.
,
Remy
,
C. D.
, and
Gates
,
D. H.
,
2018
, “
Choosing Appropriate Prosthetic Ankle Work to Reduce the Metabolic Cost of Individuals With Transtibial Amputation
,”
Sci. Rep.
,
8
(
1
), p.
15303
.10.1038/s41598-018-33569-7
20.
Kim
,
M.
,
Chen
,
T.
,
Chen
,
T.
, and
Collins
,
S. H.
,
2018
, “
An Ankle–Foot Prosthesis Emulator With Control of Plantarflexion and Inversion–Eversion Torque
,”
IEEE Trans. Rob.
,
34
(
5
), pp.
1183
1194
.10.1109/TRO.2018.2830372
21.
Yandell
,
M. B. J. R.
,
Tacca
,
K. E.
, and
Zelik
,
2019
, “
Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
4
), pp.
712
723
.10.1109/TNSRE.2019.2904924
You do not currently have access to this content.