Abstract

The main route of transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) virus is airborne. The objective of this study is to analyze the aerosol dispersion and potential exposure to medical staff within a typical medical examination room during classical airway procedures. The multiphase simulation of the aerosol particles in the airflow is based on a Lagrangian-Eulerian approach. All simulation cases with surgical mask show partially but significantly reduced maximum dispersion distances of the aerosol particles compared to the cases without a surgical mask. The simulations have shown that medical examiners are exposed to a large amount of aerosol particles, especially during procedures such as laryngoscopy where the examiner's head is directly in front of the patient's face. However, exposure can be drastically reduced if the patient wears a mask which is possible for most of the procedures studied, such as otoscopy, sonography, or anamnesis.

References

1.
Nicola
,
M.
,
Alsafi
,
Z.
,
Sohrabi
,
C.
,
Kerwan
,
A.
,
Al-Jabir
,
A.
,
Iosifidis
,
C.
,
Agha
,
M.
, and
Agha
,
R.
,
2020
, “
The Socio-Economic Implications of the Coronavirus Pandemic (COVID-19): A Review
,”
Int. J. Surg.
,
78
, pp.
185
193
.10.1016/j.ijsu.2020.04.018
2.
Lescure
,
F. X.
,
Bouadma
,
L.
,
Nguyen
,
D.
,
Parisey
,
M.
,
Wicky
,
P. H.
,
Behillil
,
S.
,
Gaymard
,
A.
,
Bouscambert-Duchamp
,
M.
,
Donati
,
F.
,
Le Hingrat
,
Q.
,
Enouf
,
V.
,
Houhou-Fidouh
,
N.
,
Valette
,
M.
,
Mailles
,
A.
,
Lucet
,
J. C.
,
Mentre
,
F.
,
Duval
,
X.
,
Descamps
,
D.
,
Malvy
,
D.
,
Timsit
,
J. F.
,
Lina
,
B.
,
Van-der Werf
,
S.
, and
Yazdanpanah
,
Y.
,
2020
, “
Clinical and Virological Data of the First Cases of COVID-19 in Europe: A Case Series
,”
Lancet Infect. Dis.
,
20
(
6
), pp.
697
706
.10.1016/S1473-3099(20)30200-0
3.
Weiss
,
P.
, and
Murdoch
,
D. R.
,
2020
, “
Clinical Course and Mortality Risk of Severe COVID-19
,”
Lancet
,
395
(
10229
), pp.
1014
1015
.10.1016/S0140-6736(20)30633-4
4.
Wölfel
,
R.
,
Corman
,
V. M.
,
Guggemos
,
W.
,
Seilmaier
,
M.
,
Zange
,
S.
,
Müller
,
M. A.
,
Niemeyer
,
D.
,
Jones
,
T. C.
,
Vollmar
,
P.
,
Rothe
,
C.
,
Hoelscher
,
M.
,
Bleicker
,
T.
,
Brünink
,
S.
,
Schneider
,
J.
,
Ehmann
,
R.
,
Zwirglmaier
,
K.
,
Drosten
,
C.
, and
Wendtner
,
C.
,
2020
, “
Virological Assessment of Hospitalized Patients With COVID-2019
,”
Nature
,
581
(
7809
), pp.
465
469
.10.1038/s41586-020-2196-x
5.
Euronews
,
2021
, “
COVID-19: Estimated 115,000 Healthcare Workers Have Died From Disease, Says WHO — Euronews
,” Euronews, Lyon, France.https://www.euronews.com/2021/05/24/covid-19-estimated-115-000-health-workers-have-diedfrom-disease-says-who
6.
Matava
,
C. T.
,
Yu
,
J.
, and
Denning
,
S.
,
2020
, “
Clear Plastic Drapes May Be Effective at Limiting Aerosolization and Droplet Spray During Extubation: Implications for COVID-19
,”
Can. J. Anesth.
,
67
(
7
), pp.
902
904
.10.1007/s12630-020-01649-w
7.
Tay
,
J. K.
,
Khoo
,
M. L.-C.
, and
Loh
,
W. S.
,
2020
, “
Surgical Considerations for Tracheostomy During the COVID-19 Pandemic: Lessons Learned From the Severe Acute Respiratory Syndrome Outbreak
,”
JAMA Otolaryngol. Head Neck Surg.
,
146
(
6
), pp.
517
518
.10.1001/jamaoto.2020.0764
8.
Wang
,
J.
, and
Du
,
G.
,
2020
, “
COVID-19 May Transmit Through Aerosol
,”
Irish J. Medical Sci.
,
189
(
4
), pp.
1143
1144
.10.1007/s11845-020-02218-2
9.
Fischer
,
U.
, “Deutsche Gesellschaft für HNO-Heilkunde, Kopf-und Hals-Chirurgie (DGHNO-KHC) und ihrer Arbeitsgemeinschaft Laryngologie und Trachealerkrankungen Chirurgische Aspekte zur Tracheostomie bei COVID-19 positiven Patiente”.
10.
Westhoff
,
M.
,
Geiseler
,
J.
,
Schönhofer
,
B.
,
Pfeifer
,
M.
,
Dellweg
,
D.
,
Bachmann
,
M.
, and
Randerath
,
W.
,
2021
, “
Weaning in Der Situation Einer Pandemie - Ein Positionspapier
,”
Pneumologie (Stuttgart, Germany)
,
75
(
2
), pp.
113
121
.10.1055/a-1337-9848
11.
Kluge
,
S.
,
Janssens
,
U.
,
Welte
,
T.
,
Weber-Carstens
,
S.
,
Schälte
,
G.
,
Spinner
,
C. D.
,
Malin
,
J. J.
,
Gastmeier
,
P.
,
Langer
,
F.
,
Wepler
,
M.
,
Westhoff
,
M.
,
Pfeifer
,
M.
,
Rabe
,
K. F.
,
Hoffmann
,
F.
,
Böttiger
,
B. W.
,
Weinmann-Menke
,
J.
,
Kersten
,
A.
,
Berlit
,
P.
,
Haase
,
R.
,
Marx
,
G.
, and
Karagiannidis
,
C.
,
2021
, “
S2k-Leitlinie-Empfehlungen Zur Stationären Therapie Von Patienten Mit COVID-19
,”
Pneumologie (Stuttgart, Germany)
,
75
(
02
), pp.
88
112
.10.1055/a-1334-1925
12.
Sosnowski
,
T. R.
,
2021
, “
Inhaled Aerosols: Their Role in COVID-19 Transmission Including Biophysical Interactions in the Lungs
,”
Curr. Opin. Colloid Interface Sci.
,
54
, p.
101451
.10.1016/j.cocis.2021.101451
13.
Nielsen
,
P.
, and
Liu
,
L.
,
2020
, “
The Influence of Air Distribution on Droplet Infection and Airborne Cross Infection,
” Report.https://vbn.aau.dk/en/publications/the-influence-of-air-distribution-on-droplet-infection-and-airbor
14.
World Health Organization
,
2020
, “
Modes of Transmission of Virus Causing COVID-19: Implications for IPC Precaution Recommendations: Scientific Brief
,” World Health Organization, Geneva, Switzerland.https://www.who.int/newsroom/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipcprecaution-recommendations
15.
Mueller
,
S.
,
Veltrup
,
R.
,
Jakubaß
,
B.
,
Kniesburges
,
S.
,
Huebner
,
M.
,
Kempfle
,
J.
,
Dittrich
,
S.
,
Iro
,
H.
, and
Döllinger
,
M.
,
2021
, “
Clinical Characterization of Respiratory Droplet Production During Common Airway Procedures Using High-Speed Imaging
,”
Sci. Rep.
,
11
(
1
), p.
10627
.10.1038/s41598-021-89760-w
16.
Li
,
Q.
,
Guan
,
X.
,
Wu
,
P.
,
Wang
,
X.
,
Zhou
,
L.
,
Tong
,
Y.
,
Ren
,
R.
,
Leung
,
K. S.
,
Lau
,
E. H.
,
Wong
,
J. Y.
,
Xing
,
X.
,
Xiang
,
N.
,
Wu
,
Y.
,
Li
,
C.
,
Chen
,
Q.
,
Li
,
D.
,
Liu
,
T.
,
Zhao
,
J.
,
Liu
,
M.
,
Tu
,
W.
,
Chen
,
C.
,
Jin
,
L.
,
Yang
,
R.
,
Wang
,
Q.
,
Zhou
,
S.
,
Wang
,
R.
,
Liu
,
H.
,
Luo
,
Y.
,
Liu
,
Y.
,
Shao
,
G.
,
Li
,
H.
,
Tao
,
Z.
,
Yang
,
Y.
,
Deng
,
Z.
,
Liu
,
B.
,
Ma
,
Z.
,
Zhang
,
Y.
,
Shi
,
G.
,
Lam
,
T. T.
,
Wu
,
J. T.
,
Gao
,
G. F.
,
Cowling
,
B. J.
,
Yang
,
B.
,
Leung
,
G. M.
, and
Feng
,
Z.
,
2020
, “
Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia
,”
New Engl. J. Med.
,
382
(
13
), pp.
1199
1207
.10.1056/NEJMoa2001316
17.
van Doremalen
,
N.
,
Bushmaker
,
T.
,
Morris
,
D. H.
,
Holbrook
,
M. G.
,
Gamble
,
A.
,
Williamson
,
B. N.
,
Tamin
,
A.
,
Harcourt
,
J. L.
,
Thornburg
,
N. J.
,
Gerber
,
S. I.
,
Lloyd-Smith
,
J. O.
,
de Wit
,
E.
, and
Munster
,
V. J.
,
2020
, “
Aerosol and Surface Stability of SARS-CoV-2 as Compared With SARS-CoV-1
,”
New Engl. J. Med.
,
382
(
16
), pp.
1564
1567
.10.1056/NEJMc2004973
18.
Edwards
,
D. A.
,
Man
,
J. C.
,
Brand
,
P.
,
Katstra
,
J. P.
,
Sommerer
,
K.
,
Stone
,
H. A.
,
Nardell
,
E.
, and
Scheuch
,
G.
,
2004
, “
Inhaling to Mitigate Exhaled Bioaerosols
,”
Proc. Natl. Acad. Sci.
,
101
(
50
), pp.
17383
17388
.10.1073/pnas.0408159101
19.
Hersen
,
G.
,
Moularat
,
S.
,
Robine
,
E.
,
Géhin
,
E.
,
Corbet
,
S.
,
Vabret
,
A.
, and
Freymuth
,
F.
,
2008
, “
Impact of Health on Particle Size of Exhaled Respiratory Aerosols: Case-Control Study
,”
CLEAN Soil, Air, Water
,
36
(
7
), pp.
572
577
.10.1002/clen.200700189
20.
Scheuch
,
G.
,
2020
, “
Breathing is Enough: For the Spread of Influenza Virus and SARS-CoV-2 by Breathing Only
,”
J. Aerosol Med. Pulmon. Drug Deliv.
,
33
(
4
), pp.
230
234
.10.1089/jamp.2020.1616
21.
Edwards
,
D. A.
,
Ausiello
,
D.
,
Salzman
,
J.
,
Devlin
,
T.
,
Langer
,
R.
,
Beddingfield
,
B. J.
,
Fears
,
A. C.
,
Doyle-Meyers
,
L. A.
,
Redmann
,
R. K.
,
Killeen
,
S. Z.
,
Maness
,
N. J.
, and
Roy
,
C. J.
,
2021
, “
Exhaled Aerosol Increases With COVID-19 Infection, Age, and Obesity
,”
Proc. Natl. Acad. Sci.
,
118
(
8
), p.
e2021830118
.10.1073/pnas.2021830118
22.
Dudalski
,
N.
,
Mohamed
,
A.
,
Mubareka
,
S.
,
Bi
,
R.
,
Zhang
,
C.
, and
Savory
,
E.
,
2020
, “
Experimental Investigation of Far-Field Human Cough Airflows From Healthy and Influenza-Infected Subjects
,”
Indoor Air
,
30
(
5
), pp.
966
977
.10.1111/ina.12680
23.
Anfinrud
,
P.
,
Stadnytskyi
,
V.
,
Bax
,
C. E.
, and
Bax
,
A.
,
2020
, “
Visualizing Speech-Generated Oral Fluid Droplets With Laser Light Scattering
,”
New Engl. J. Med.
,
382
(
21
), pp.
2061
2063
.10.1056/NEJMc2007800
24.
Dbouk
,
T.
, and
Drikakis
,
D.
,
2020
, “
On Coughing and Airborne Droplet Transmission to Humans
,”
Phys. Fluids
,
32
(
5
), p.
053310
.10.1063/5.0011960
25.
Leonard
,
S.
,
Strasser
,
W.
,
Whittle
,
J. S.
,
Volakis
,
L. I.
,
DeBellis
,
R. J.
,
Prichard
,
R.
,
Atwood
,
C. W.
, and
Dungan
,
G. C.
,
2020
, “
Reducing Aerosol Dispersion by High Flow Therapy in COVID-19: High Resolution Computational Fluid Dynamics Simulations of Particle Behavior During High Velocity Nasal Insufflation With a Simple Surgical Mask
,”
J. Am. Coll. Emer. Phys. Open
,
1
(
4
), pp.
578
591
.10.1002/emp2.12158
26.
Bhattacharyya
,
S.
,
Dey
,
K.
,
Paul
,
A. R.
, and
Biswas
,
R.
,
2020
, “
A Novel CFD Analysis to Minimize the Spread of COVID-19 Virus in Hospital Isolation Room
,”
Chaos, Solitons Fractals
,
139
, p.
110294
.10.1016/j.chaos.2020.110294
27.
Przekwas
,
A.
, and
Chen
,
Z.
,
2020
, “
Washing Hands and the Face May Reduce COVID-19 Infection
,”
Med. Hypotheses
,
144
, p.
110261
.10.1016/j.mehy.2020.110261
28.
Peng
,
S.
,
Chen
,
Q.
, and
Liu
,
E.
,
2020
, “
The Role of Computational Fluid Dynamics Tools on Investigation of Pathogen Transmission: Prevention and Control
,”
Sci. Total Environ.
,
746
, p.
142090
.10.1016/j.scitotenv.2020.142090
29.
Ren
,
J.
,
Wang
,
Y.
,
Liu
,
Q.
, and
Liu
,
Y.
,
2021
, “
Numerical Study of Three Ventilation Strategies in a Prefabricated COVID-19 Inpatient Ward
,”
Build. Environ.
,
188
, p.
107467
.10.1016/j.buildenv.2020.107467
30.
ERCOFTAC, ERCOFTAC CADO
,
2021
, “
How Much Do We Know and How Much We Don't Know About the COVID 19 Flow Physics
,” Ercoftac, Bushey, UK.https://www.ercoftac.org/ercoftac_news/-how-much-do-we-know-and-how-much-don-t-knowabout-the-covid-19-flow-physics-/
31.
ERCOFTAC, ERCOFTAC CADO,
2021
, “
The Second Zoom Meeting on COVID 19 Flows: Study and Practical Recommendations
”, Ercoftac, Bushey, UK.https://www.ercoftac.org/events/the-second-zoom-meeting-on-covid-19-flows-study-andpractical-recommendations/
32.
Shao
,
S.
,
Zhou
,
D.
,
He
,
R.
,
Li
,
J.
,
Zou
,
S.
,
Mallery
,
K.
,
Kumar
,
S.
,
Yang
,
S.
, and
Hong
,
J.
,
2021
, “
Risk Assessment of Airborne Transmission of COVID-19 by Asymptomatic Individuals Under Different Practical Settings
,”
J. Aerosol Sci.
,
151
, p.
105661
.10.1016/j.jaerosci.2020.105661
33.
Kähler
,
C. J.
, and
Hain
,
R.
,
2020
, “
Fundamental Protective Mechanisms of Face Masks Against Droplet Infections
,”
J. Aerosol Sci.
,
148
, p.
105617
.10.1016/j.jaerosci.2020.105617
34.
Pendar
,
M. R.
, and
Páscoa
,
J. C.
,
2020
, “
Numerical Modeling of the Distribution of Virus Carrying Saliva Droplets During Sneeze and Cough
,”
Phys. Fluids
,
32
(
8
), p.
083305
.10.1063/5.0018432
35.
Workman
,
A. D.
,
Jafari
,
A.
,
Welling
,
D. B.
,
Varvares
,
M. A.
,
Gray
,
S. T.
,
Holbrook
,
E. H.
,
Scangas
,
G. A.
,
Xiao
,
R.
,
Carter
,
B. S.
,
Curry
,
W. T.
, and
Bleier
,
B. S.
,
2020
, “
Airborne Aerosol Generation During Endonasal Procedures in the Era of COVID-19: Risks and Recommendations
,”
Otolaryngol. Head Neck Surg.
,
163
(
3
), pp.
465
470
.10.1177/0194599820931805
36.
Shah
,
Y.
,
Kurelek
,
J. W.
,
Peterson
,
S. D.
, and
Yarusevych
,
S.
,
2021
, “
Experimental Investigation of Indoor Aerosol Dispersion and Accumulation in the Context of COVID-19: Effects of Masks and Ventilation
,”
Phys. Fluids
,
33
(
7
), p.
073315
.10.1063/5.0057100
37.
Zheng
,
M.
,
Lui
,
C.
,
O'Dell
,
K.
,
Johns
,
M.
,
Ference
,
E. H.
, and
Hur
,
K.
,
2021
, “
Aerosol Generation During Laryngology Procedures in the Operating Room
,”
Laryngoscope
,
131
(
12
), pp.
2759
2765
.10.1002/lary.29729
38.
Digital Industries Software,
2020
, Simcenter Star-CCM+ User Guide v. 2020.2, Plano, TX.
39.
Papoulias
,
D.
, and
Lo
,
S.
,
2015
, “
Advances in CFD Modelling of Multiphase Flows in Cyclone Separators
,”
Chem. Eng. Trans.
,
43
, pp.
1603
1608
.10.3303/CET1543268
40.
Mittal
,
R.
,
Ni
,
R.
, and
Seo
,
J. H.
,
2020
, “
The Flow Physics of COVID-19
,”
J. Fluid Mech.
,
894
(
F2
), pp.
1
14
.10.1017/jfm.2020.330
41.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
42.
Schiller
,
L.
,
1933
, “
Über Die Grundlegenden Berechnungen Bei Der Schwerkraftaufbereitung
,”
Z. Ver. Deut. Ing.
,
77
, pp.
318
321
.
43.
Sommerfeld
,
M.
,
2000
, “
Theoretical and Experimental Modelling of Particulate Flows
,” von Karman Institute for Fluid Dynamics, Lecture Series 6, Sint-Genesius-Rode, Belgium, Report.https://www.yumpu.com/en/document/read/18701972/theoretical-and-experimental-modelling-ofparticulate-flows
44.
Stiesch
,
G.
,
2003
,
Modeling Engine Spray and Combustion Processes
,
Springer Science & Business Media
, Berlin.
45.
Gosman
,
A. D.
, and
Loannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.10.2514/3.62687
46.
Crowe
,
C. T.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
1998
,
Multiphase Flows With Droplets and Particles
,
CRC Press
, Boca Raton, FL.
47.
Hamdi
,
M.
,
Havet
,
M.
,
Rouaud
,
O.
, and
Tarlet
,
D.
,
2014
, “
Comparison of Different Tracers for PIV Measurements in EHD Airflow
,”
Exp. Fluids
,
55
(
4
), pp.
1
12
.10.1007/s00348-014-1702-z
48.
Peters
,
G.
,
Wendler
,
O.
,
Böhringer
,
D.
,
Gostian
,
A.-O.
,
Müller
,
S. K.
,
Canziani
,
H.
,
Hesse
,
N.
,
Semmler
,
M.
,
Berry
,
D. A.
,
Kniesburges
,
S.
,
Peukert
,
W.
, and
Döllinger
,
M.
,
2021
, “
Human Laryngeal Mucus From the Vocal Folds: Rheological Characterization by Particle Tracking Microrheology and Oscillatory Shear Rheology
,”
Appl. Sci.
,
11
(
7
), p.
3011
.10.3390/app11073011
49.
Breuer
,
M.
,
2002
,
Direkte Numerische Simulation Und Large-Eddy Simulation Turbulenter Strömungen Auf Hochleistungsrechnern
,
Shaker Verlag
,
Aachen, Germany
.
50.
Bae
,
S.
,
Kim
,
S. H.
, and
Lee
,
J. H.
,
2020
, “
An Investigation Into the Hydrodynamics of a Spinning Cone Column: CFD Simulations by an Eulerian-Lagrangian Approach
,”
Comput. Chem. Eng.
,
132
, p.
106635
.10.1016/j.compchemeng.2019.106635
51.
Zörner
,
S.
,
Kaltenbacher
,
M.
, and
Döllinger
,
M.
,
2013
, “
Investigation of Prescribed Movement in Fluid-Structure Interaction Simulation for the Human Phonation Process
,”
Comput. Fluids
,
86
(
100
), pp.
133
140
.10.1016/j.compfluid.2013.06.031
52.
Sadeghi
,
H.
,
Döllinger
,
M.
,
Kaltenbacher
,
M.
, and
Kniesburges
,
S.
,
2019
, “
Aerodynamic Impact of the Ventricular Folds in Computational Larynx Models
,”
J. Acoust. Soc. Am.
,
145
(
4
), pp.
2376
2387
.10.1121/1.5098775
53.
Wei
,
J.
, and
Li
,
Y.
,
2017
, “
Human Cough as a Two-Stage Jet and Its Role in Particle Transport
,”
PLoS One
,
12
(
1
), p.
e0169235
.10.1371/journal.pone.0169235
54.
Gupta
,
J. K.
,
Lin
,
C. H.
, and
Chen
,
Q.
,
2009
, “
Flow Dynamics and Characterization of a Cough
,”
Indoor Air
,
19
(
6
), pp.
517
525
.10.1111/j.1600-0668.2009.00619.x
55.
Tabuenca
,
J. G.
,
2021
, “tidal_breathing_segmentation,” GitHub, San Francisco, CA, accessed Mar. 24, 2022, https://github.com/javier-gracia-tabuenca/tidal_breathing_segmentation
56.
van Hattum
,
R. J.
, and
Worth
,
J. H.
,
1967
, “
Air Flow Rates in Normal Speakers
,”
Cleft Palate J.
,
4
(
2
), pp.
137
147
.https://cleftpalatejournal.pitt.edu/ojs/cleftpalate/article/view/150
57.
Asadi
,
S.
,
Wexler
,
A. S.
,
Cappa
,
C. D.
,
Barreda
,
S.
,
Bouvier
,
N. M.
, and
Ristenpart
,
W. D.
,
2019
, “
Aerosol Emission and Superemission During Human Speech Increase With Voice Loudness
,”
Sci. Rep.
,
9
(
1
), p.
2348
.10.1038/s41598-019-38808-z
58.
Verma
,
S.
,
Dhanak
,
M.
, and
Frankenfield
,
J.
,
2020
, “
Visualizing the Effectiveness of Face Masks in Obstructing Respiratory Jets
,”
Phys. Fluids
,
32
(
6
), p.
061708
.10.1063/5.0016018
59.
Ishii
,
K.
,
Ohno
,
Y.
,
Oikawa
,
M.
, and
Onishi
,
N.
,
2021
, “
Relationship Between Human Exhalation Diffusion and Posture in Face-to-Face Scenario With Utterance
,”
Phys. Fluids
,
33
(
2
), p.
027101
.10.1063/5.0038380
60.
Kniesburges
,
S.
,
Schlegel
,
P.
,
Peters
,
G.
,
Westphalen
,
C.
,
Jakubaß
,
B.
,
Veltrup
,
R.
,
Kist
,
A. M.
,
Döllinger
,
M.
,
Gantner
,
S.
,
Kuranova
,
L.
,
Benthaus
,
T.
,
Semmler
,
M.
, and
Echternach
,
M.
,
2021
, “
Effects of Surgical Masks on Aerosol Dispersion in Professional Singing
,”
J. Expos. Sci. Environ. Epidemiol.
,
2021
, pp.
1
8
.10.1038/s41370-021-00385-7
You do not currently have access to this content.