Abstract

Two-photon lithography (TPL) is a direct laser writing process that enables the fabrication of cm-scale complex three-dimensional polymeric structures with submicrometer resolution. In contrast to the slow and serial writing scheme of conventional TPL, projection TPL (P-TPL) enables rapid printing of entire layers at once. However, process prediction remains a significant challenge in P-TPL due to the lack of computationally efficient models. In this work, we present machine learning-based surrogate models to predict the outcomes of P-TPL to >98% of the accuracy of a physics-based reaction-diffusion finite element simulation. A classification neural network was trained using data generated from the physics-based simulations. This enabled us to achieve computationally efficient and accurate prediction of whether a set of printing conditions will result in precise and controllable polymerization and the desired printing versus no printing or runaway polymerization. We interrogate this surrogate model to investigate the parameter regimes that are promising for successful printing. We predict combinations of photoresist reaction rate constants that are necessary to print for a given set of processing conditions, thereby generating a set of printability maps. The surrogate models reduced the computational time that is required to generate these maps from more than 10 months to less than a second. Thus, these models can enable rapid and informed selection of photoresists and printing parameters during process control and optimization.

References

1.
Sun
,
H.-B.
, and
Kawata
,
S.
,
2004
, “
Two-Photon Photopolymerization and 3D Lithographic Microfabrication
,”
NMR 3D Analysis Photopolymerization
,
Springer
,
Berlin
, pp.
169
273
.
2.
Emons
,
M.
,
Obata
,
K.
,
Binhammer
,
T.
,
Ovsianikov
,
A.
,
Chichkov
,
B. N.
, and
Morgner
,
U.
,
2012
, “
Two-Photon Polymerization Technique With Sub-50 nm Resolution by Sub-10 fs Laser Pulses
,”
Opt. Mater. Express
,
2
(
7
), pp.
942
947
.10.1364/OME.2.000942
3.
LaFratta
,
C. N.
, and
Baldacchini
,
T.
,
2017
, “
Two-Photon Polymerization Metrology: Characterization Methods of Mechanisms and Microstructures
,”
Micromachines
,
8
(
4
), p.
101
.10.3390/mi8040101
4.
Baldacchini
,
T.
,
2015
,
Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications
,
William Andrew
,
Waltham, MA
.
5.
Tanaka
,
T.
,
Sun
,
H.-B.
, and
Kawata
,
S.
,
2002
, “
Rapid Sub-Diffraction-Limit Laser Micro/Nanoprocessing in a Threshold Material System
,”
Appl. Phys. Lett.
,
80
(
2
), pp.
312
314
.10.1063/1.1432450
6.
Wu
,
E.-S.
,
Strickler
,
J. H.
,
Harrell
,
W. R.
, and
Webb
,
W. W.
,
1992
, “
Two-Photon Lithography for Microelectronic Application
,”
Proc. SPIE
, 1674, Optical/Laser Microlithography V.10.1117/12.130367
7.
Cumpston
,
B. H.
,
Ananthavel
,
S. P.
,
Barlow
,
S.
,
Dyer
,
D. L.
,
Ehrlich
,
J. E.
,
Erskine
,
L. L.
,
Heikal
,
A. A.
, et al.,
1999
, “
Two-Photon Polymerization Initiators for Three-Dimensional Optical Data Storage and Microfabrication
,”
Nature
,
398
(
6722
), pp.
51
54
.10.1038/17989
8.
Vanderpoorten
,
O.
,
Peter
,
Q.
,
Challa
,
P. K.
,
Keyser
,
U. F.
,
Baumberg
,
J.
,
Kaminski
,
C. F.
, and
Knowles
,
T. P. J.
,
2019
, “
Scalable Integration of Nano-, and Microfluidics With Hybrid Two-Photon Lithography
,”
Microsyst. Nanoeng.
,
5
(
1
), p.
40
.10.1038/s41378-019-0080-3
9.
van der Velden
,
G.
,
Fan
,
D.
, and
Staufer
,
U.
,
2020
, “
Fabrication of a Microfluidic Device by Using Two-Photon Lithography on a Positive Photoresist
,”
Micro Nano Eng.
,
7
, p.
100054
.10.1016/j.mne.2020.100054
10.
Atwater
,
J.
,
Spinelli
,
P.
,
Kosten
,
E.
,
Parsons
,
J.
,
Van Lare
,
C.
,
Van de Groep
,
J.
,
Garcia de Abajo
,
J.
, et al.,
2011
, “
Microphotonic Parabolic Light Directors Fabricated by Two-Photon Lithography
,”
Appl. Phys. Lett.
,
99
(
15
), p.
151113
.10.1063/1.3648115
11.
Tian
,
Y.
,
Kwon
,
H.
,
Shin
,
Y. C.
, and
King
,
G. B.
,
2014
, “
Fabrication and Characterization of Photonic Crystals in Photopolymer sz2080 by Two-Photon Polymerization Using a Femtosecond Laser
,”
J. Micro Nano-Manuf.
,
2
(
3
), p.
034501
.10.1115/1.4027737
12.
Moughames
,
J.
,
Porte
,
X.
,
Thiel
,
M.
,
Ulliac
,
G.
,
Larger
,
L.
,
Jacquot
,
M.
,
Kadic
,
M.
, and
Brunner
,
D.
,
2020
, “
Three-Dimensional Waveguide Interconnects for Scalable Integration of Photonic Neural Networks
,”
Optica
,
7
(
6
), pp.
640
646
.10.1364/OPTICA.388205
13.
Dietrich
,
P.-I.
,
Blaicher
,
M.
,
Reuter
,
I.
,
Billah
,
M.
,
Hoose
,
T.
,
Hofmann
,
A.
,
Caer
,
C.
, et al.,
2018
, “
In Situ 3D Nanoprinting of Free-Form Coupling Elements for Hybrid Photonic Integration
,”
Nat. Photonics
,
12
(
4
), pp.
241
247
.10.1038/s41566-018-0133-4
14.
Selimis
,
A.
,
Mironov
,
V.
, and
Farsari
,
M.
,
2015
, “
Direct Laser Writing: Principles and Materials for Scaffold 3D Printing
,”
Microelectron. Eng.
,
132
, pp.
83
89
.10.1016/j.mee.2014.10.001
15.
Limongi
,
T.
,
Brigo
,
L.
,
Tirinato
,
L.
,
Pagliari
,
F.
,
Gandin
,
A.
,
Contessotto
,
P.
,
Giugni
,
A.
, and
Brusatin
,
G.
,
2021
, “
Three-Dimensionally Two-Photon Lithography Realized Vascular Grafts
,”
Biomed. Mater.
,
16
(
3
), p.
035013
.10.1088/1748-605X/abca4b
16.
Soreni-Harari
,
M.
,
St. Pierre
,
R.
,
McCue
,
C.
,
Moreno
,
K.
, and
Bergbreiter
,
S.
,
2020
, “
Multimaterial 3D Printing for Microrobotic Mechanisms
,”
Soft Rob.
,
7
(
1
), pp.
59
67
.10.1089/soro.2018.0147
17.
De Marco
,
C.
,
Alcântara
,
C. C. J.
,
Kim
,
S.
,
Briatico
,
F.
,
Kadioglu
,
A.
,
de Bernardis
,
G.
,
Chen
,
X.
, et al.,
2019
, “
Indirect 3D and 4D Printing of Soft Robotic Microstructures
,”
Adv. Mater. Technol.
,
4
(
9
), p.
1900332
.10.1002/admt.201900332
18.
Meza
,
L. R.
,
Das
,
S.
, and
Greer
,
J. R.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
.10.1126/science.1255908
19.
Bauer
,
J.
,
Meza
,
L. R.
,
Schaedler
,
T. A.
,
Schwaiger
,
R.
,
Zheng
,
X.
, and
Valdevit
,
L.
,
2017
, “
Nanolattices: An Emerging Class of Mechanical Metamaterials
,”
Adv. Mater.
,
29
(
40
), p.
1701850
.10.1002/adma.201701850
20.
Saha
,
S. K.
,
Wang
,
D.
,
Nguyen
,
V. H.
,
Chang
,
Y.
,
Oakdale
,
J. S.
, and
Chen
,
S.-C.
,
2019
, “
Scalable Submicrometer Additive Manufacturing
,”
Science
,
366
(
6461
), pp.
105
109
.10.1126/science.aax8760
21.
Hahn
,
V.
,
Kiefer
,
P.
,
Frenzel
,
T.
,
Qu
,
J.
,
Blasco
,
E.
,
Barner‐Kowollik
,
C.
, and
Wegener
,
M.
,
2020
, “
Rapid Assembly of Small Materials Building Blocks (Voxels) Into Large Functional 3D Metamaterials
,”
Adv. Funct. Mater.
,
30
(
26
), p.
1907795
.10.1002/adfm.201907795
22.
Somers
,
P.
,
Liang
,
Z.
,
Johnson
,
J. E.
,
Boudouris
,
B. W.
,
Pan
,
L.
, and
Xu
,
X.
,
2021
, “
Rapid, Continuous Projection Multi-Photon 3D Printing Enabled by Spatiotemporal Focusing of Femtosecond Pulses
,”
Light: Sci. Appl.
,
10
(
1
), p.
199
.10.1038/s41377-021-00645-z
23.
Yang
,
L.
,
El-Tamer
,
A.
,
Hinze
,
U.
,
Li
,
J.
,
Hu
,
Y.
,
Huang
,
W.
,
Chu
,
J.
, and
Chichkov
,
B. N.
,
2015
, “
Parallel Direct Laser Writing of Micro-Optical and Photonic Structures Using Spatial Light Modulator
,”
Opt. Lasers Eng.
,
70
, pp.
26
32
.10.1016/j.optlaseng.2015.02.006
24.
Vizsnyiczai
,
G.
,
Kelemen
,
L.
, and
Ormos
,
P.
,
2014
, “
Holographic Multi-Focus 3D Two-Photon Polymerization With Real-Time Calculated Holograms
,”
Opt. Express
,
22
(
20
), pp.
24217
24223
.10.1364/OE.22.024217
25.
Jonušauskas
,
L.
,
Gailevičius
,
D.
,
Rekštytė
,
S.
,
Baldacchini
,
T.
,
Juodkazis
,
S.
, and
Malinauskas
,
M.
,
2019
, “
Mesoscale Laser 3D Printing
,”
Opt. Express
,
27
(
11
), pp.
15205
15221
.10.1364/OE.27.015205
26.
Pingali
,
R.
, and
Saha
,
S. K.
,
2022
, “
Reaction-Diffusion Modeling of Photopolymerization During Femtosecond Projection Two-Photon Lithography
,”
ASME J. Manuf. Sci. Eng.
,
144
(
2
), p.
021011
.10.1115/1.4051830
27.
Andrzejewska
,
E.
,
2016
, “
Free Radical Photopolymerization of Multifunctional Monomers
,”
Three-Dimensional Microfabrication Using Two-Photon Polymerization
,
Elsevier
,
Waltham, MA
, pp.
62
81
.10.1016/B978-0-323-35321-2.00004-2
28.
Wu
,
S.
,
Serbin
,
J.
, and
Gu
,
M.
,
2006
, “
Two-Photon Polymerisation for Three-Dimensional Micro-Fabrication
,”
J. Photochem. Photobiol., A.
,
181
(
1
), pp.
1
11
.10.1016/j.jphotochem.2006.03.004
29.
Rumi
,
M.
,
Ehrlich
,
J. E.
,
Heikal
,
A. A.
,
Perry
,
J. W.
,
Barlow
,
S.
,
Hu
,
Z.
,
McCord-Maughon
,
D.
, et al.,
2000
, “
Structure−Property Relationships for Two-Photon Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(Styryl)Benzene Derivatives
,”
J. Am. Chem. Soc.
,
122
(
39
), pp.
9500
9510
.10.1021/ja994497s
30.
Jariwala
,
A. S.
,
Ding
,
F.
,
Boddapati
,
A.
,
Breedveld
,
V.
,
Grover
,
M. A.
,
Henderson
,
C. L.
, and
Rosen
,
D. W.
,
2011
, “
Modeling Effects of Oxygen Inhibition in Mask‐Based Stereolithography
,”
Rapid Prototyping J.
,
17
(
3
), pp.
168
175
.10.1108/13552541111124734
31.
Mueller
,
J. B.
,
Fischer
,
J.
,
Mayer
,
F.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2014
, “
Polymerization Kinetics in Three‐Dimensional Direct Laser Writing
,”
Adv. Mater.
,
26
(
38
), pp.
6566
6571
.10.1002/adma.201402366
32.
Carlotti
,
M.
, and
Mattoli
,
V.
,
2019
, “
Functional Materials for Two-Photon Polymerization in Microfabrication
,”
Small
,
15
(
40
), p.
e1902687
.10.1002/smll.201902687
33.
Stein
,
M.
,
1987
, “
Large Sample Properties of Simulations Using Latin Hypercube Sampling
,”
Technometrics
,
29
(
2
), pp.
143
151
.10.1080/00401706.1987.10488205
34.
Pingali
,
R.
, and
Saha
,
S.
,
2023
, “
Data for Printability Prediction in Projection Two-Photon Lithography Via Machine Learning Based Surrogate Modeling of Photopolymerization
,”
Mendeley Data
, V1.10.17632/8z29gzf6rd.1
35.
Simpson
,
T. W.
,
Poplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.10.1007/PL00007198
36.
Cao
,
J.
, and
Lin
,
Z.
,
2015
, “
Extreme Learning Machines on High Dimensional and Large Data Applications: A Survey
,”
Math. Probl. Eng.
,
2015
, pp.
1
13
.10.1155/2015/103796
37.
Bishop
,
C. M.
,
1994
, “
Neural Networks and Their Applications
,”
Rev. Sci. Instrum.
,
65
(
6
), pp.
1803
1832
.10.1063/1.1144830
38.
Abiodun
,
O. I.
,
Jantan
,
A.
,
Omolara
,
A. E.
,
Dada
,
K. V.
,
Mohamed
,
N. A.
, and
Arshad
,
H.
,
2018
, “
State-of-the-Art in Artificial Neural Network Applications: A Survey
,”
Heliyon
,
4
(
11
), p.
e00938
.10.1016/j.heliyon.2018.e00938
39.
Zou
,
J.
,
Han
,
Y.
, and
So
,
S.-S.
,
2009
, “
Overview of Artificial Neural Networks
,”
Artificial Neural Networks: Methods Applications
, Humana Press, Totowa, NJ, pp.
14
22
.
40.
Ouyang
,
W.
,
Xu
,
X.
,
Lu
,
W.
,
Zhao
,
N.
,
Han
,
F.
, and
Chen
,
S.-C.
,
2023
, “
Ultrafast 3D Nanofabrication Via Digital Holography
,”
Nat. Commun.
,
14
(
1
), p.
1716
.10.1038/s41467-023-37163-y
41.
Guo
,
W.
,
Tian
,
Q.
,
Guo
,
S.
, and
Guo
,
Y.
,
2020
, “
A Physics-Driven Deep Learning Model for Process-Porosity Causal Relationship and Porosity Prediction With Interpretability in Laser Metal Deposition
,”
CIRP Ann.
,
69
(
1
), pp.
205
208
.10.1016/j.cirp.2020.04.049
You do not currently have access to this content.