To develop lithium-ion batteries with a high rate-capability and low cost, the prevention of capacity loss is one of major challenges, which needs to be tackled in the lithium-ion battery industry. During electrochemical processes, lithium ions diffuse from and insert into battery electrodes accompanied with the phase transformation, whereas ionic diffusivity and concentration are keys to the resultant battery capacity. In the current study, we compare voltage versus capacity of lithium-ion batteries at different current-rates (C-rates) discharging. Larger hysteresis and voltage fluctuations are observed in higher C-rate samples. We investigate origins of voltage fluctuations by quantifying lithium-ion intensity and distribution via a time-of-flight secondary ion mass spectrometry (ToF-SIMS). The result shows that for fully discharged samples, lithium-ion intensity and distribution are not C-rate dependent, suggesting different lithium-ion insertion mechanisms at a higher C-rate discharging might be solely responsible for the observed low frequency voltage fluctuation.

References

1.
Office of Atmospheric Programs,
2010
, “
Environmental Protection Agency Analysis of the American Power Act
,” U.S. Environmental Protection Agency, Washington, DC.
2.
Environmental Protection Agency and Department of Transportation,
2012
, “
2017–2025 Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards
,”
Fed. Reg.
, 77(199), pp. 62627–62629.
3.
Chiang
,
Y.
,
2010
, “
Building a Better Battery
,”
Science
,
330
(
6010
), pp.
1485
1486
.10.1126/science.1198591
4.
Kang
,
B.
, and
Ceder
,
G.
,
2009
, “
Battery Materials for Ultrafast Charging and Discharging
,”
Nature
,
458
(
7235
), pp.
190
193
.10.1038/nature07853
5.
Yuan
,
L.
,
Wang
,
Z.
, and
Zhang
,
W.
,
2011
, “
Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
4
(
2
), pp.
269
284
.10.1039/c0ee00029a
6.
Park
,
M.
,
Zhang
,
X.
, and
Chung
,
M.
,
2010
, “
A Review of Conduction Phenomena in Li-Ion Batteries
,”
J. Power Sources
,
195
(
24
), pp.
7904
7929
.10.1016/j.jpowsour.2010.06.060
7.
Zhang
,
W.
,
2011
, “
Structure and Performance of LiFePO4 Cathode Materials: A Review
,”
J. Power Sources
,
196
(
6
), pp.
2962
2970
.10.1016/j.jpowsour.2010.11.113
8.
Yamada
,
A.
,
Koizumi
,
H.
, and
Nishimura
,
S.
,
2006
, “
Room-Temperature Miscibility Gap in LixFePO4
,”
Nat. Mater.
,
5
(
5
), pp.
357
360
.10.1038/nmat1634
9.
Bai
,
P.
,
Cogswell
,
D. A.
, and
Bazant
,
M. Z.
,
2011
, “
Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge
,”
Nano Lett.
,
11
(
11
), pp.
4890
4896
.10.1021/nl202764f
10.
Cogswell
,
D. A.
, and
Bazant
,
M. Z.
,
2012
, “
Coherency Strain and the Kinetics of Phase Separation in LiFePO4 Nanoparticles
,”
ACS Nano
,
6
(
3
), pp.
2215
2225
.10.1021/nn204177u
11.
Oyama
,
G.
,
Yamada
,
Y.
, and
Natsui
,
R.
,
2012
, “
Kinetics of Nucleation and Growth in Two-Phase Electrochemical Reaction of LixFePO4
,”
J. Phys. Chem. C
,
116
(
13
), pp.
7306
7311
.10.1021/jp300085n
12.
Belu
,
A.
,
Graham
,
D.
, and
Castner
,
D.
,
2003
, “
Time-of-Flight Secondary Ion Mass Spectrometry: Techniques and Applications for the Characterization of Biomaterial Surfaces
,”
Biomaterials
,
24
(
21
), pp.
3635
3653
.10.1016/S0142-9612(03)00159-5
13.
Castle
,
J. E.
,
Decker
,
F.
, and
Salvi
,
A. M.
,
2008
, “
XPS and TOF-SIMS Study of the Distribution of Li Ions in Thin Films of Vanadium Pentoxide After Electrochemical Intercalation
,”
Surf. Interface Anal.
,
40
(
3–4
), pp.
746
750
.10.1002/sia.2747
14.
Fedorkova
,
A.
,
Orinakova
,
R.
, and
Orinak
,
A.
,
2011
, “
Electrochemical and TOF-SIMS Investigations of PPy/PEG-Modified LiFePO4 Composite Electrodes for Li-Ion Batteries
,”
Solid State Sci.
,
13
(
5
), pp.
824
830
.10.1016/j.solidstatesciences.2011.03.015
15.
Hong
,
T. E.
,
Jeong
,
E. D.
, and
Baek
,
S. R.
,
2012
, “
Nano SIMS Characterization of Boron- and Aluminum-Coated LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium Secondary Ion Batteries
,”
J. Appl. Electrochem.
,
42
(
1
), pp.
41
46
.10.1007/s10800-011-0369-x
16.
Li
,
J.
,
Swiatowska
,
J.
, and
Seyeux
,
A.
,
2010
, “
XPS and ToF-SIMS Study of Sn-Co Alloy Thin Films as Anode for Lithium Ion Battery
,”
J. Power Sources
,
195
(
24
), pp.
8251
8257
.10.1016/j.jpowsour.2010.07.043
17.
Li
,
J.
,
Swiatowska
,
J.
, and
Maurice
,
V.
,
2011
, “
XPS and ToF-SIMS Study of Electrode Processes on Sn-Ni Alloy Anodes for Li-Ion Batteries
,”
J. Phys. Chem. C
,
115
(
14
), pp.
7012
7018
.10.1021/jp201232n
18.
Li
,
J.
,
Maurice
,
V.
, and
Swiatowska-Mrowiecka
,
J.
,
2009
, “
XPS, Time-of-Flight-SIMS and Polarization Modulation IRRAS Study of Cr2O3 Thin Film Materials as Anode for Lithium Ion Battery
,”
Electrochim. Acta
,
54
(
14
), pp.
3700
3707
.10.1016/j.electacta.2009.01.052
19.
Swiatowska-Mrowiecka
,
J.
,
Martin
,
F.
, and
Maurice
,
V.
,
2008
, “
The Distribution of Lithium Intercalated in V2O5 Thin Films Studied by XPS and ToF-SIMS
,”
Electrochim. Acta
,
53
(
12
), pp.
4257
4266
.10.1016/j.electacta.2007.12.083
20.
Fedorkova
,
A.
,
Orinakova
,
R.
, and
Orinak
,
A.
,
2010
, “
PPy Doped PEG Conducting Polymer Films Synthesized on LiFePO4 Particles
,”
J. Power Sources
,
195
(
12
), pp.
3907
3912
.10.1016/j.jpowsour.2010.01.003
21.
Kao
,
Y.
,
Tang
,
M.
, and
Meethong
,
N.
,
2010
, “
Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes
,”
Chem. Mater.
,
22
(
21
), pp.
5845
5855
.10.1021/cm101698b
22.
Cogswell
,
D. A.
, and
Bazant
,
M. Z.
,
2013
, “
Theory of Coherent Nucleation in Phase-Separating Nanoparticles
,”
Nano Lett.
,
13
(
7
), pp.
3036
3041
.10.1021/nl400497t
23.
Zhang
,
Y.
,
Wang
,
C.
, and
Tang
,
X.
,
2011
, “
Cycling Degradation of an Automotive LiFePO4 Lithium-Ion Battery
,”
J. Power Sources
,
196
(
3
), pp.
1513
1520
.10.1016/j.jpowsour.2010.08.070
24.
Martin
,
J. F.
,
Yamada
,
A.
, and
Kobayashi
,
G.
,
2008
, “
Air Exposure Effect on LiFePO4
,”
Electrochem. Solid State Lett.
,
11
(
1
) pp.
A12
A16
.10.1149/1.2801016
25.
Downing
,
R.
,
Lamaze
,
G.
, and
Langland
,
J.
,
1993
, “
Neutron Depth Profiling—Overview and Description of Nist Facilities
,”
J. Res. Natl. Inst. Stand. Technol.
,
98
(
1
), pp.
109
126
.10.6028/jres.098.008
26.
Nagpure
,
S. C.
,
Downing
,
R. G.
, and
Bhushan
,
B.
,
2011
, “
Neutron Depth Profiling Technique for Studying Aging in Li-Ion Batteries
,”
Electrochim. Acta
,
56
(
13
), pp.
4735
4743
.10.1016/j.electacta.2011.02.037
27.
Williams
,
P.
,
1985
, “
Secondary Ion Mass-Spectrometry
,”
Annu. Rev. Mater. Sci.
,
15
, pp.
517
548
.10.1146/annurev.ms.15.080185.002505
28.
Dreyer
,
W.
,
Jamnik
,
J.
, and
Guhlke
,
C.
,
2010
, “
The Thermodynamic Origin of Hysteresis in Insertion Batteries
,”
Nat. Mater.
,
9
(
5
), pp.
448
453
.10.1038/nmat2730
29.
Van der Ven
,
A.
,
Garikipati
,
K.
, and
Kim
,
S.
,
2009
, “
The Role of Coherency Strains on Phase Stability in LixFePO4: Needle Crystallites Minimize Coherency Strain and Overpotential
,”
J. Electrochem. Soc.
,
156
(
11
), pp.
A949
A957
.10.1149/1.3222746
30.
Malik
,
R.
,
Zhou
,
F.
, and
Ceder
,
G.
,
2011
, “
Kinetics of Non-Equilibrium Lithium Incorporation in LiFePO4
,”
Nat. Mater.
,
10
(
8
), pp.
587
590
.10.1038/nmat3065
31.
Meethong
,
N.
,
Kao
,
Y.
, and
Tang
,
M.
,
2008
, “
Electrochemically Induced Phase Transformation in Nanoscale Olivines Li1-xMPO4 (M = Fe, Mn)
,”
Chem. Mater.
,
20
(
19
), pp.
6189
6198
.10.1021/cm801722f
32.
Andersson
,
A.
, and
Thomas
,
J.
,
2001
, “
The Source of First-Cycle Capacity Loss in LiFePO4
,”
J. Power Sources
,
97–98
, pp.
498
502
.10.1016/S0378-7753(01)00633-4
33.
Delmas
,
C.
,
Maccario
,
M.
, and
Croguennec
,
L.
,
2008
, “
Lithium Deintercalation in LiFePO4 Nanoparticles Via a Domino-Cascade Model RID G-6492-2011
,”
Nat. Mater.
,
7
(
8
), pp.
665
671
.10.1038/nmat2230
34.
Zhong
,
K.
,
Cui
,
Y.
, and
Xia
,
X.
,
2014
, “
Study on the Stability of the LiFePO4 Li-Ion Battery Via an Electrochemical Method
,”
J. Power Sources
,
250
, pp.
296
305
.10.1016/j.jpowsour.2013.11.019
35.
Song
,
H.
,
Cao
,
Z.
, and
Chen
,
X.
,
2013
, “
Capacity Fade of LiFePO4/Graphite Cell at Elevated Temperature
,”
J. Solid State Electrochem.
,
17
(
3
), pp.
599
605
.10.1007/s10008-012-1893-2
36.
Liu
,
Q.
,
He
,
H.
, and
Li
,
Z.
,
2014
, “
Rate-Dependent, Li-Ion Insertion/Deinsertion Behavior of LiFePO4 Cathodes in Commercial 18650 LiFePO4 Cells
,”
ACS Appl. Mater. Interfaces
,
6
(
5
), pp.
3282
3289
.10.1021/am405150c
You do not currently have access to this content.